
TEST-DRIVEN DATA ANALYSIS

Nicholas J. Radcliffe
Stochastic Solutions Limited

& Department of Mathematics, University of Edinburgh

https://stochasticsolutions.com/pdf/tdda-london-2024.pdf

London
2024–06-14T15:30:00+01:00

https://stochasticsolutions.com/pdf/tdda-london-2024.pdf

OUTLINE
• TDDA Motivation & Methodology 20 mins

• Checking data with constraints & tdda command line 20 mins
• (Maybe) Rexpy (inferring regular expressions from examples) 5 mins

• Testing analytical code with tdda Python API 25 mins
• (Possibly) Automatic test generation with gentest 10 mins

• Type VI Errors & wrap-up 10 mins

TOTAL 90 mins

assert sum(

)

=

✔︎

SOFTWARE DEVELOPMENT (WITH TDD*)

Write some
(failing) tests

Write/change code
to make tests pass

Simplify
code

Add new tests
for enhancements

& bug fixesOften:
• Well-understood inputs
• Well-understood goal
• Many kinds of errors/failures are unmistakable

Constantly run
tests with CI?

*test-driven
 development

TDDA extends TDD’s idea of testing for
software correctness

with the idea of testing for
meaningfulness of analysis,

correctness and validity of input and output data,
& correctness of interpretation.

TDD ↦ TDDA

“test-driven data analysis”

Why is this
lying bastard
lying to me?

— Jeremy Paxman
 (paraphrasing Louis Heron,
 paraphrasing unnamed mentor
 from Daily Worker)

How is this
misleading data
misleading me?

— Nick Radcliffe

ó

TEST-DRIVEN DATA ANALYSIS IS …
• A methodology for attempting to improve the quality of data and

analysis in data science (see blog https://tdda.info)
• An open source Python library (pip install tdda) with

command-line tools and APIs for constraints, reference testing,
automatic test generation and regular expression inference

• Available commercially as part of Miro, the data analysis suite
from Stochastic Solutions, with enhanced capabilities in
constraint generation, validation, reporting, synthetic data
generation etc.

https://tdda.info

INITIAL

SUCCESS

CHOOSE 
APPROACH

ERROR OF

INTERPRETATION

✔︎

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP

ANALYTICAL

PROCESS

ERROR OF

IMPLEMENTATION

✗
Mistakes
during
coding

DEVELOPMENT PHASE

Using sample/initial
datasets & inputs to
develop the process

✔︎

OPERATIONAL PHASE

Using the process with other
datasets and inputs, possibly

having different characteristics

RUN

ANALYTICAL

PROCESS

ERROR OF

PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF

APPLICABILITY

✔︎

✗

Mismatch
between

development
data or

assumptions
& deployment

data

PRODUCE

ANALYTICAL

RESULTS

✔︎ INTERPRET

ANALYTICAL

RESULTS

✔︎

Misinterpret
results ✗

(bugs)

INITIAL

SUCCESS

CHOOSE 
APPROACH

ERROR OF

INTERPRETATION

✔︎

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP

ANALYTICAL

PROCESS

ERROR OF

IMPLEMENTATION

✗
Mistakes
during
coding

✔︎ RUN

ANALYTICAL

PROCESS

ERROR OF

PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF

APPLICABILITY

✔︎

✗

Mismatch
between

development
data or

assumptions &
deployment

data

PRODUCE

ANALYTICAL

RESULTS

✔︎ INTERPRET

ANALYTICAL

RESULTS

✔︎

Misinterpret
results ✗

80%

20%

70%

30%

90%

10%

80%

20%

90%

10%

36%

If you buy into this model, it’s sobering to attach
probability estimates to each transition and calculate the

probability of success after a few runs . . .

24%
15%

10%

⋱
(bugs)

1. Checking data: Constraint Discovery & Verification
• A bit like “unit tests for data”
• Can cover inputs, outputs and intermediate results
• Automatically discovered (and refined by humans)
• Use as part of analysis to verify inputs, outputs and intermediates (as appropriate)

2. Checking analytical processes & pipelines: “Reference” Tests
• cf. system/integration tests in TDD
• With support for new assertions, exclusions, regeneration, helpful reporting etc.
• Re-run these tests all the time, everywhere

2a. Automatic Test Generation (currently in beta)
• Give tdda gentest a command/script to run.
• It generates tests for you.

TDDA: MAIN IDEAS

Install from PyPI (recommended)

 pip install -U tdda

or (if your pip isn’t connected to the specific Python binary you want to use)

 python -m pip install -U tdda

or from Github (source)

 git clone https://github.com/tdda/tdda.git

 python setup.py install

TDDA LIBRARY

https://github.com/tdda/tdda.git

TDDA LIBRARY
• Runs on Python (3), Mac, Linux & Windows, under unittest and
pytest

• MIT Licensed
• Documentation:

• Sphinx source in doc subdirectory
• Built copy at http://tdda.readthedocs.io

• Quick reference:
 http://www.tdda.info/pdf/tdda-quickref.pdf

http://tdda.readthedocs.io
http://www.tdda.info/pdf/tdda-quickref.pdf

`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

TESTING

DATA

PROCESSES

Reference Tests • Gentest

`

INSERT
STRINGS

HERE

COLLECT
REGEX
HERE

GENERATING

REGULAR EXPRESSIONS

FROM EXAMPLES

Rexpy

CONSTRAINT

GENERATION

& VERIFICATION

`

INSERT
DATA
HERE

COLLECT
CONSTRAINTS

&
VERIFICATIONS

HERE

VERIFYING DATA

WITH

CONSTRAINTS

Discover • Verify • Detect

PYTHON TDDA LIBRARY (tdda)

Gentest writes tests, so you don't have to™

CONSTRAINT GENERATION,

VERIFICATION

& ANOMALY DETECTION

`

INSERT
DATA
HERE

COLLECT
CONSTRAINTS

&
VERIFICATIONS

HERE

GIGO

AWFUL

EXCELLENT

 TDDA

✔︎

{  }OUTWARNING

/ ERROR

GARBAGE IN

!

•

ERROR DETECTION

✔︎✔︎

GARBAGE IN

•

GOLD OUT

ERROR CORRECTION

GOLD IN

•

GARBAGE OUT

CORRUPTION

GARBAGE IN

•

GARBAGE OUT

NORMALITY 

A.K.A. NEGLIGENCE

First do no harm

DATA WORKERS SHOULD SIGN UP TO

THE (ACTUAL) HYPOCRATIC OATH

CONSTRAINTS
• Very commonly, data analysis uses data tables (e.g. DataFrames)

as inputs, outputs and intermediate results

• There are many things we know (or at least expect) to be true
about these data tables

• Could write down all these expectations as constraints and
check that they are actually satisfied during analysis . . . but life’s
too short! (Also: humans are rather error-prone)

THE BIG IDEA
• Get the computer to find (“discover”) constraints satisfied by

example datasets automatically.

• Verify against these constraints, modifying as required

• (Humans much happier to make tweaks than start from scratch)

SINGLE FIELD CONSTRAINTS DATASET CONSTRAINTS

Age ≤ 150 The data frame must contain field CID

type(Age) = int Number of records must be 118

CID ≠ NULL One field should be tagged O

CID unique (in a customer table) Date should be sorted ascending

len(CardNumber) = 16 MULTI-FIELD CONSTRAINTS

Base in {"C", "G", "A", "T"} StartDate ≤ EndDate

Vote ≠ "Trump" AlmostEqual(F, m ⨉ a, 6)

StartDate < tomorrow() sum(Favourite*) = 1

v < 2.97e8 minVal ≤ medianVal ≤ maxVal

Height ~ N(1.8, 0.2) V ≤ H ⨉ W ⨉ D

EXAMPLE CONSTRAINTS

(m/s)

CONSTRAINTS SUPPORTED BY TDDA LIBRARY

KIND DESCRIPTION

min Minimum allowed value; on verification interpreted with proportionate tolerance epsilon. ✔︎ ✔︎ ✔︎ ✔︎ ✗

max Maximum allowed value; on verification interpreted with proportionate tolerance epsilon. ✔︎ ✔︎ ✔︎ ✔︎ ✗

sign "positive", "non-negative", "zero", "non-positive" or "negative". ✔︎ ✔︎ ✔︎ ✗ ✗

max_nulls 0 if nulls not allowed. In principle, can be higher values (in particular, 1), but discover
function does not use these at present.

✔︎ ✔︎ ✔︎ ✔︎ ✔︎

no_duplicates true if duplicates are not allowed. ✔︎ ✔︎ ✔︎ ✔︎ ✔︎

min_length smallest allowed string length ✗ ✗ ✗ ✗ ✔︎

max_length largest allowed string length ✗ ✗ ✗ ✗ ✔︎

allowed_values list of allowed; strings must be one of those values. ✗ ✗ ✗ ✗ ✔︎

rex list of regular expressions; strings must match at least one. ✗ ✗ ✗ ✗ ✔︎

STRIN
G

D

A
TE

REA
L

IN
TEG

ER

BO

O
LEA

N

AUTOMATIC CONSTRAINT GENERATION

{

 C1: Age ≥ 0

 C2: ID is not null

 C3: CardNumber ~

 DDDD DDDD DDDD DDDD

 ⋮

}

TRAINING 
DATA

AUTOMATIC

DISCOVERY

OF

CONSTRAINTS

DISCOVERED

CONSTRAINTS

(believed to
be “good”)

(ideally, now
 refine by hand)

CONSTRAINT GENERATION
1. Copy examples somewhere:

cd ~/tmp

tdda examples

cd constraints_examples

2. Generate constraints from first 92 elements of periodic table (testdata/elements92.csv)

tdda discover -r testdata/elements92.csv elements92.tdda

or python elements_discover_92.py

3. Examine output (elements92.tdda)

CSV

The -r flag tells
discover to
include regular
expression
constraints for
string fields.

This is off by
default, because it
can be slow on
large datasets.

DATA VERIFICATION/DETECTION

{

 C1: …

 C2: …

 C3: …

 ⋮

}

OPERATIONAL 
DATA

VERIFICATIONCONSTRAINTS

FAILING

DATA

REPORT

ALERTS

6. Now run verification of larger dataset (first 118 elements of periodic table)
against the same constraints. Should fail (because, for example, atomic number
now goes to 118).

 tdda verify testdata/elements118.csv elements92.tdda

 Or python elements_verify_118_against_92.py

CONSTRAINT VERIFICATION & ANOMALY DETECTION

5. Perform verification of same data (as DataFrame). Should pass.

 tdda verify testdata/elements92.csv elements92.tdda

 or python elements_verify_92.py

You can use the
.parquet files
instead of the CSV files
if you prefer.

There’s no difference in
this case because the
CSV files are “good”
CSV files and conform
to what the tdda CSV
file reader expects.

FAILURE (ANOMALY) DETECTION

6. “Detect” the failing records

• This writes out the failing records to bads.csv.  
(Can use .parquet instead.)

• --per-constraint says write out a column for every constraint that ever fails, as
well as an nfailures column.

• --output-fields says write all the original fields as well as the results fields
(otherwise, it just writes a row number).

• --interleave says to interleave boolean columns saying which constraints failed
with the original columns (otherwise they all go at after the input columns)

tdda detect testdata/elements118.parquet \

 elements92.tdda \

 bads.csv \

 --per-constraint \

 --output-fields \

 --interleave

You can use the .csv
files instead if you prefer.

ASIDE: PARQUET FILES
• Parquet is a cross-framework file format for

storing typed data frames
• It was created by The Apache Foundation

and effectively subsumes the feather file
format, developed by Wes McKinney
(Creator of Pandas) and Hadley Wycombe
(Creator of HadleyVerse/TidyVerse in R)

• It’s a good way to serialize DataFrames from
many frameworks, including Pandas and
Polars (and R!), to disk (i.e. to save them),
and to deserialize them back into memory
(i.e. to load them).

• It is broadly type-safe and efficient and has
support for reading subsets of fields
(columns) and records (rows)

• It is in requirements.txt for tdda.
• If you don’t have it: pip install pyarrow

$ python

Python 3.11.0 (v3.11.0:deaf509e8f ...

Type "help", "copyright", "credits" or ...

>>> import pyarrow

>>> pyarrow.__version__

'15.0.0'

>>> import pandas as pd

>>> df = pd.DataFrame({'n': [0,1],

 's': ['no', 'yes']})

>>> df

 n s

0 0 no

1 1 yes

>>> df.to_parquet('foo.parquet', index=False)

>>> df2 = pd.read_parquet('foo.parquet')

>>> df2

 n s

0 0 no

1 1 yes

>>> df2 = pd.read_parquet('foo.parquet')

CONSTRAINT GENERATION & VERIFICATION

7. Repeat verification of larger dataset (118 elements) against constraints generated against
that same (118) data. Should pass.

 tdda verify testdata/elements118.csv testdata/elements118.tdda

 or python elements_verify_118.py

8. Finally, verify the constraints from 118 data against the 92 data. Should pass.

 tdda verify testdata/elements92.csv elements118.tdda

Note: fewer constraints are discovered for elements118 than for
elements92 (67 against 72). This is because there are nulls in some fields in the

118 data (the melting points, density etc.) but not in the 92 data.

1. Generate constraints from first 92 elements of periodic table
 tdda discover -r testdata/elements92.parquet elements92p.tdda

2. Diff against elements92.tdda

 diff elements92.tdda elements92p.tdda

3. Perform verification of same data (as DataFrame). Should pass.

 tdda verify testdata/elements92.parquet elements92.tdda

PARQUETCONSTRAINT GENERATION & VERIFICATION

3,4c3,4

< "local_time": "2024-05-15 08:08:45",

< "utc_time": "2024-05-15 07:07:45",

> "local_time": "2024-05-15 08:08:23",

> "utc_time": "2024-05-15 07:07:23",

5a6

> "source": "testdata/elements92.csv",

7a9

> "dataset": "elements92.csv",

9c11,12

< "n_selected": 92

> "n_selected": 92,

> "tddafile": “elements92p.tdda”

Use  elements92.tdda

 or elements92p.tdda

{

 "fields": {

 "Z": {"type": "int", "min": 1, "max": 92, "sign": "positive", "max_nulls": 0, "no_duplicates": true},

 "Name": {"type": "string", "min_length": 3, "max_length": 12, "max_nulls": 0, "no_duplicates": true},

 "Symbol": {"type": "string", "min_length": 1,"max_length": 2, "max_nulls": 0, "no_duplicates": true},

 "Period": {"type": "int", "min": 1, "max": 7, "sign": "positive", "max_nulls": 0},

 "Group": {"type": "int", "min": 1, "max": 18,"sign": "positive"},

 "ChemicalSeries": {"type": "string", "min_length": 7, "max_length": 20, "max_nulls": 0,

 "allowed_values": ["Actinoid", "Alkali metal", "Alkaline earth metal”,

 "Halogen", “Lanthanoid", "Metalloid", "Noble gas”,

 "Nonmetal", "Poor metal", "Transition metal”]},

 "AtomicWeight": {"type": "real", "min": 1.007946, "max": 238.028914, "sign": "positive", "max_nulls": 0},

 "Etymology": {"type": "string", "min_length": 4, "max_length": 39, "max_nulls": 0},

 "RelativeAtomicMass": {"type": "real", "min": 1.007946, "max": 238.028914, "sign": “positive",

 "max_nulls": 0},

 "MeltingPointC": {"type": "real", "min": -258.975, "max": 3675.0, "max_nulls": 1},

 "MeltingPointKelvin": {"type": "real", "min": 14.2, "max": 3948.0, "sign": "positive", "max_nulls": 1},

 "BoilingPointC": {"type": "real", "min": -268.93, "max": 5596.0, "max_nulls": 0},

 "BoilingPointF": {"type": "real", "min": -452.07, "max": 10105.0, "max_nulls": 0},

 "Density": {"type": "real", "min": 8.9e-05, "max": 22.610001, "sign": "positive", "max_nulls": 0},

 "Description": {"type": "string", "min_length": 1, "max_length": 83},

 "Colour": {"type": "string", "min_length": 4, "max_length": 80}

 }

}

EXAMPLE: elements92.tdda

EXAMPLE SUCCESSFUL VERIFICATION

EXAMPLE UNSUCCESSFUL VERIFICATION

CONSTRAINTS API

from tdda.constraints.pdconstraints import discover_constraints

constraints = discover_constraints(df)

with open('constraints.tdda', 'w') as f:

 f.write(constraints.to_json())

from tdda.constraints.pdconstraints import verify_df

verification = verify_df(df, ‘constraints.tdda’) # (printable object)
constraints_df = verification.to_frame()) # (Pandas DataFrame)

DISCOVERY

VERIFICATION

 field failures passes type min min_length max

0 AtomicWeight 2 3 True True NaN False

2 Name 1 4 True NaN True NaN

3 Density 2 3 True True NaN False

4 MeltingPointKelvin 1 4 True True NaN True

5 Symbol 1 4 True NaN True NaN

7 BoilingPointF 1 3 True True NaN True

8 Etymology 2 2 True NaN True NaN

9 RelativeAtomicMass 2 3 True True NaN False

11 MeltingPointC 1 3 True True NaN True

12 Z 1 5 True True NaN False

13 BoilingPointC 1 3 True True NaN True

 max_length sign max_nulls no_duplicates allowed_values

0 NaN True False NaN NaN

2 False NaN True True NaN

3 NaN True False NaN NaN

4 NaN True False NaN NaN

5 False NaN True True NaN

7 NaN NaN False NaN NaN

8 False NaN False NaN NaN

9 NaN True False NaN NaN

11 NaN NaN False NaN NaN

12 NaN True True True NaN

13 NaN NaN False NaN NaN

OUTPUT OF pd.DataFrame.to_frame()

CONSTRAINTS
True

FALSE

NaN

Satisfied

Not satisfied

No constraint

GENERATING CONSTRAINTS

& VERIFYING DATA

DISCOVER ADAPT VALIDATE

DEVELOPMENT

training data

VERIFY MONITOR REFINE

USE

operational data
holdout data?

ABSENT CONSTRAINTS

Gregory (Scotland Yard detective): “Is there any other point
to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
Gregory: “The dog did nothing in the night-time.”
Holmes: “That was the curious incident.”

— Silver Blaze, in Memoirs of Sherlock Holmes
Arthur Conan Doyle, 1892.

Operationalise

Monitor

Adapt*

REFINING CONSTRAINTS

Discover on subset of data (“training data”)

Read the constraints

Adapt*

Apply to holdout data

Adapt*

IDEAL PROCESS

Act / Reject
Or fix root cause

Or improve
normalisation,

cleansing,
upstream pipeline…

TRUE POSITIVES

FALSE NEGATIVES

Add or tighten
constraints

FALSE POSITIVES
Relax or remove

constraints

REDUCED PROCESS

Discover on the training data

Operationalise

Monitor

* Tighten/Relax/Add/
 Delete/Choose Among

EXAMPLE CONSTRAINT DISCOVERY

$ tdda discover -r training.csv constraints.tdda

{

 "creation_metadata": {

 "local_time": "2019-03-07 08:08:56",

 "utc_time": "2019-03-07 08:08:56",

 "creator": "TDDA 1.0.21",

 "source": "data.csv",

 "host": "bartok.local",

 "user": "njr",

 "dataset": "data.csv",

 "n_records": 20,

 "n_selected": 20,

 "tddafile": "constraints.tdda"

 },

 "fields": {

 .

 .

 .

EXAMPLE CONSTRAINT DISCOVERY

"account_number": {

 "type": "int",

 "min": 10074173,

 "max": 12923415,

 "sign": "positive",

 "max_nulls": 0,

 "no_duplicates": true

},

"open_date": {

 "type": "date",

 "min": "2003-01-17 00:00:00",

 "max": "2018-11-02 00:00:00",

 "max_nulls": 0

},

"close_date": {

 "type": "date",

 "min": "2011-11-14 00:00:00",

 "max": "2014-04-03 00:00:00"

},

EXAMPLE CONSTRAINT DISCOVERY

"postcode": {

 "type": "string",

 "min_length": 7,

 "max_length": 8,

 "max_nulls": 0,

 "no_duplicates": true,

 "rex": ["^[A-Z]{2}\\d{1,2} \\d[A-Z]{2}$"]

},

"account_type": {

 "type": "string",

 "min_length": 6,

 "max_length": 8,

 "max_nulls": 0,

 "allowed_values": [

 "current",

 "current+",

 "offset”

],

 "rex": ["^[a-z]{6,7}$", "^current\\+$"]

},

EXAMPLE CONSTRAINT DISCOVERY

 "overdraft_limit": {

 "type": "int",

 "min": 0,

 "max": 16800,

 "sign": "non-negative",

 "max_nulls": 0

 }

 }

}

$ tdda verify training.csv constraints.tdda

account_number: 0 failures 6 passes

 type ✓ min ✓ max ✓ sign ✓ max_nulls ✓ no_duplicates ✓

open_date: 0 failures 4 passes

 type ✓ min ✓ max ✓ max_nulls ✓

close_date: 0 failures 3 passes

 type ✓ min ✓ max ✓

postcode: 0 failures 6 passes

 type ✓ min_length ✓ max_length ✓ max_nulls ✓

 no_duplicates ✓ rex ✓

account_type: 0 failures 6 passes

 type ✓ min_length ✓ max_length ✓ max_nulls ✓

 allowed_values ✓ rex ✓

overdraft_limit: 0 failures 5 passes

 type ✓ min ✓ max ✓ sign ✓ max_nulls ✓

Constraints passing: 30 Constraints failing: 0

CONFIRM THAT CONSTRAINTS PASS ON TRAINING DATA

CHECK WHETHER NEW DATA SATISFIES CONSTRAINTS

$ tdda verify operationaldata.csv constraints.tdda

account_number: 2 failures 4 passes

 type ✓ min ✗ max ✗ sign ✓ max_nulls ✓ no_duplicates ✓

open_date: 1 failure 2 passes

 type ✓ min ✗ max ✗ max_nulls ✓

close_date: 2 failures 1 pass

 type ✓ min ✗ max ✗

postcode: 0 failures 6 passes

 type ✓ min_length ✓ max_length ✓ max_nulls ✓

 no_duplicates ✓ rex ✓

account_type: 3 failures 3 passes

 type ✓ min_length ✗ max_length ✓ max_nulls ✓

 allowed_values ✗ rex ✗

overdraft_limit: 1 failure 4 passes

 type ✓ min ✓ max ✗ sign ✓ max_nulls ✓

Constraints passing: 21 Constraints failing: 9

$ tdda detect operationaldata.csv constraints.tdda failures.csv

account_number: 2 failures 4 passes

 type ✓ min ✗ max ✗ sign ✓ max_nulls ✓ no_duplicates ✓

open_date: 1 failure 2 passes

 type ✓ min ✗ max ✗ max_nulls ✓

close_date: 2 failures 1 pass

 type ✓ min ✗ max ✗

postcode: 0 failures 6 passes

 type ✓ min_length ✓ max_length ✓ max_nulls ✓

 no_duplicates ✓ rex ✓

account_type: 3 failures 3 passes

 type ✓ min_length ✗ max_length ✓ max_nulls ✓

 allowed_values ✗ rex ✗

overdraft_limit: 1 failure 4 passes

 type ✓ min ✓ max ✗ sign ✓ max_nulls ✓

Records passing: 76 Records failing: 24

FIND FAILING VALUES IN THE NEW DATA

DETECT FAILURES ON DEVELOPMENT DATA
account
number

open 
date

close  
date postcode account

type
overdraft

limit

account
number
min ok

account 
number 
max ok

open date
min ok

close date
min ok

close date
max ok

account type
min ok

account type
values ok

account type
rex ok

overdraft limit
max ok nfailures

10033300 2005/02/08 ∅ MO73 2YX current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10050552 2009/02/24 ∅ XK5 3NM current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10066665 2003/02/16 ∅ PI9 3BG current+ 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10174458 2011/07/18 2016/09/27 SX5 5PV current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

10278760 2004/05/15 2007/11/20 BA72 8XF current 18,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 2

10352931 2004/06/15 ∅ WJ9 2OA basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10440004 2002/12/19 ∅ YC24 4UT current+ 4,800 ✓ ✓ ✗ ∅ ∅ ✓ ✓ ✓ ✓ 1

10476972 2018/01/27 ∅ OE5 9UI current 17,400 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10699455 2018/09/17 ∅ GQ1 9IV current 19,200 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10717064 2003/11/30 ∅ VM1 8WR current 20,000 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10824167 2008/05/21 ∅ NI55 0OS basic 1,400 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10902721 2005/10/30 ∅ LL22 5UX current 17,100 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10962316 2003/12/25 2005/02/25 XX9 2RP current 4,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11005672 2007/06/10 ∅ ZT64 3WP basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11385380 2015/08/07 ∅ WC47 7OA current+ 19,900 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

11589140 2007/11/04 ∅ PF53 9BM basic 8,300 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11604974 2008/04/27 2010/02/18 XE76 8YA current 2,800 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11705553 2014/05/02 2018/05/05 LK55 9TE current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

11816734 2012/04/27 ∅ SS73 8VO basic 15,200 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11957115 2007/04/01 ∅ WO8 7QE current 19,500 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

12086022 2013/05/29 2016/10/28 UA06 1CI premium 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 2

12899220 2014/09/08 2015/06/08 UX80 2RO current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

12940182 2017/12/13 ∅ WA93 4SW current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

12987964 2015/08/27 ∅ SD83 3CR current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

DETECT FAILURES ON DEVELOPMENT DATA
account
number

open 
date

close  
date postcode account

type
overdraft

limit

account
number
min ok

account 
number 
max ok

open date
min ok

close date
min ok

close date
max ok

account type
min ok

account type
values ok

account type
rex ok

overdraft limit
max ok nfailures

10033300 2005/02/08 ∅ MO73 2YX current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10050552 2009/02/24 ∅ XK5 3NM current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10066665 2003/02/16 ∅ PI9 3BG current+ 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10174458 2011/07/18 2016/09/27 SX5 5PV current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

10278760 2004/05/15 2007/11/20 BA72 8XF current 18,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 2

10352931 2004/06/15 ∅ WJ9 2OA basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10440004 2002/12/19 ∅ YC24 4UT current+ 4,800 ✓ ✓ ✗ ∅ ∅ ✓ ✓ ✓ ✓ 1

10476972 2018/01/27 ∅ OE5 9UI current 17,400 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10699455 2018/09/17 ∅ GQ1 9IV current 19,200 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10717064 2003/11/30 ∅ VM1 8WR current 20,000 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10824167 2008/05/21 ∅ NI55 0OS basic 1,400 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10902721 2005/10/30 ∅ LL22 5UX current 17,100 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10962316 2003/12/25 2005/02/25 XX9 2RP current 4,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11005672 2007/06/10 ∅ ZT64 3WP basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11385380 2015/08/07 ∅ WC47 7OA current+ 19,900 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

11589140 2007/11/04 ∅ PF53 9BM basic 8,300 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11604974 2008/04/27 2010/02/18 XE76 8YA current 2,800 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11705553 2014/05/02 2018/05/05 LK55 9TE current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

11816734 2012/04/27 ∅ SS73 8VO basic 15,200 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11957115 2007/04/01 ∅ WO8 7QE current 19,500 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

12086022 2013/05/29 2016/10/28 UA06 1CI premium 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 2

12899220 2014/09/08 2015/06/08 UX80 2RO current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

12940182 2017/12/13 ∅ WA93 4SW current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

12987964 2015/08/27 ∅ SD83 3CR current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

indicator columns
for each failing constraint

original data
for failing records

number of failures
for each record

account
number

open 
date

close  
date postcode account

type
overdraft

limit

account
number
min ok

account 
number 
max ok

open date
min ok

close date
min ok

close date
max ok

account type
min ok

account type
values ok

account type
rex ok

overdraft limit
max ok nfailures

10033300 2005/02/08 ∅ MO73 2YX current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10050552 2009/02/24 ∅ XK5 3NM current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10066665 2003/02/16 ∅ PI9 3BG current+ 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10174458 2011/07/18 2016/09/27 SX5 5PV current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

10278760 2004/05/15 2007/11/20 BA72 8XF current 18,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 2

10352931 2004/06/15 ∅ WJ9 2OA basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10440004 2002/12/19 ∅ YC24 4UT current+ 4,800 ✓ ✓ ✗ ∅ ∅ ✓ ✓ ✓ ✓ 1

10476972 2018/01/27 ∅ OE5 9UI current 17,400 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10699455 2018/09/17 ∅ GQ1 9IV current 19,200 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10717064 2003/11/30 ∅ VM1 8WR current 20,000 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10824167 2008/05/21 ∅ NI55 0OS basic 1,400 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10902721 2005/10/30 ∅ LL22 5UX current 17,100 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10962316 2003/12/25 2005/02/25 XX9 2RP current 4,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11005672 2007/06/10 ∅ ZT64 3WP basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11385380 2015/08/07 ∅ WC47 7OA current+ 19,900 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

11589140 2007/11/04 ∅ PF53 9BM basic 8,300 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11604974 2008/04/27 2010/02/18 XE76 8YA current 2,800 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11705553 2014/05/02 2018/05/05 LK55 9TE current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

11816734 2012/04/27 ∅ SS73 8VO basic 15,200 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11957115 2007/04/01 ∅ WO8 7QE current 19,500 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

12086022 2013/05/29 2016/10/28 UA06 1CI premium 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 2

12899220 2014/09/08 2015/06/08 UX80 2RO current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

12940182 2017/12/13 ∅ WA93 4SW current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

12987964 2015/08/27 ∅ SD83 3CR current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

account
number

10033300
10050552
10066665

account number
min ok

✗

✗

✗

"account_number": {

 "type": "int",

 "min": 10074173,

 "max": 12923415,

 "sign": "positive",

 "max_nulls": 0,

 "no_duplicates": true

},

nfailures

1
1
1

Rexpy
Automatic construction of regular expressions from data

`

INSERT
STRINGS

HERE

COLLECT
REGEX
HERE

^\d{3}\–\d{3}\–\d{4}$

212–977–0331

^\d+\–\d+\–\d+$

^[12]{3}\–[7–9]{3}\–(0|1|3){4}$

+ means “1 or more times”

specific digits

^212\–977\–0331$totally specific (overfitted)

^.*$
. matches any char
 means “0 or more times”

totally unspecific (underfitted)
(matches all strings)

What Rexpy produces

REGULAR EXPRESSIONS

*

EH22 4EH
SW1A 1AA

 B1 1BC

^[A-Z]{1,2}[0-9]{5}[A-Z]? [0-9]{5}[A-Z]{2}$

REGULAR EXPRESSIONS

Some people, when confronted
with a problem, think

“I know, I’ll use regular expressions.”

Now they have two problems.

— Jamie Zawinski
 comp.emacs.xemacs, 1997

Powerful
Fast

Widely supported
Hard to write

Harder to read

Even harder to quote/escape†

Harder still to debug

*Ugly

† r'...' is your friend*Extremely . . .

CONSPROS

Why not let
the computer do

the work?

$ rexpy

212-988-0321

987-654-3210

476 123 8829

123 456 7890

701 734 9288

177 441 7712

^[0-9]{3}\-[0-9]{3}\-[0-9]{4}$

^[0-9]{3}\ [0-9]{3}\ [0-9]{4}$

Rexpy currently never groups
white space with punctuation

COMMAND LINE
$ rexpy --help

Usage:

 rexpy [FLAGS] [input file [output file]]

or

 python -m tdda.rexpy.rexpy [FLAGS] [input file [output file]]

If input file is provided, it should contain one string per line; otherwise lines will be read from
standard input.

If output file is provided, regular expressions found will be written to that (one per line); otherwise
they will be printed.

FLAGS are optional flags. Currently::

 -h, --header Discard first line, as a header.

 -?, --help Print this usage information and exit (without error)

 -g, --group Generate capture groups for each variable fragment of each regular expression

 generated, i.e. surround variable components with parentheses

 e.g. '^([A-Z]+)\-([0-9]+)$'

 becomes '^[A-Z]+\-[0-9]+$'

 -u, --underscore Allow underscore to be treated as a letter. Mostly useful for matching

 identifiers. Also allow -_.

 -d, --dot Allow dot to be treated as a letter. Mostly useful for matching identifiers.

 Also -. --period.

 -m, --minus Allow minus to be treated as a letter. Mostly useful for matching

 identifiers. Also --hyphen or --dash.

 -v, --version Print the version number.

PYTHON API

from tdda import rexpy

corpus = ['123-AA-971', '12-DQ-802', '198-AA-045', '1-BA-834']

results = rexpy.extract(corpus)

print(f'Number of regular expressions found: {len(results)}')

for rex in results:

 print(' ' + rex)

$ python ids.py

Number of regular expressions found: 1

 ^\d{1,3}\-[A-Z]{2}\-\d{3}$

 Get examples: tdda examples rexpy

ids.py:

RESULTS

PYTHON API WITH PANDAS
import pandas as pd

import numpy as np

from tdda import rexpy

df = pd.DataFrame({'a3': ["one", "two", np.NaN],

 'a45': ['three', 'four', 'five']})

re3 = rexpy.pdextract(df['a3'])

re45 = rexpy.pdextract(df['a45'])

re345 = rexpy.pdextract([df['a3'], df['a45']])

print(f' re3: {re3}')

print(f' re45: {re45}')

print(f're345: {re345}')

$ python pandas_ids.py

 re3: ['^[a-z]{3}$']

 re45: ['^[a-z]{4,5}$']

re345: ['^[a-z]{3,5}$']

pandas_ids.py:

RESULTS

✗
✔︎Rexpy is intended for

strings with structure

Feeding free text to Rexpy will be
slow, frustrating, & useless

National insurance numbers

UUIDs

Zip codes

Postcodes

Credit card numbers

email addresses

car registration numbers

version numbers

identifiers

…

Free text

Novels

…

REFERENCE TESTS

& AUTOMATIC TEST GENERATION

WITH GENTEST

`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

TESTING DATA PIPELINES
• Can’t write the tests first because the output is too hard to generate;
• Output artefacts are not completely fixed; 

“Semantic” equivalence vs. “syntactic” equivalence:
– Same graph, different files (random labels, different serialisation order,  

embedded metadata);
– Same dictionary/set; different files / different ordering;
– Equivalent outputs but different metadata (versions, host, datestamp etc.);
– Important parts of output fixed; unimportant parts vary;

• Looping tests with multiple outputs: one failure hides later results;
• Slow to run — often want to re-run a single or a few tests;
• Output generated in memory but want to compare to file;  

hard to understand differences when tests fail if data is in memory;
• Hard to update reference results after code change/bug fix;
• Systematic change affects many tests.

… is different from testing other code

New kinds of assertion
Ignore substrings

Ignore patterns (regex)
Pre-assert normalisation functions

DataFrame Comparators
DataFrame Comparison Specifiers}{

Generate reference results from code

Multi-assertions

Tag tests; option to run only tagged tests

Automatic writing of strings in memory to file
on failure; diff command generated}{

Option to rewrite actual results to reference results

Option to rewrite actual results to reference results; tagging allows focused rewrite

ANALYTICAL

PROCESS

INPUTS OUTPUTS
DATA

& PARAMETERS
DATASETS, NUMBERS,

GRAPHS, MODELS,

DECISIONS ETC.

REFERENCE TESTS

Develop a verification procedure (diff) and periodically rerun:
do the same inputs (still) produce the same (or equivalent) outputs?

Record
inputs

Capture as
scripted, parameterised
executable procedure

Record
(“reference”)

outputs
(“reproducible research”)

REFERENCE TEST SUPPORT

• Comparing actual string (in memory or in file) to reference (expected)
string (in file)

• Exclude lines with substrings or parts that match regular expressions
• Preprocess output before comparison
• Write actual string produced to file when different
• Show specific diff command needed to examine differences
• Check multiple files in single test; report all failures
• Automatically re-write reference results after human verification.

1: UNSTRUCTURED (STRING) RESULTS

Check a single (in-memory) string against a refererence file

self.assertStringCorrect(string, ref_path, . . .)

Check a single generated file against a reference file:

self.assertFileCorrect(actual_path, ref_path, . . .)

Check a multiple generated files against respective reference files:

self.assertFilesCorrect(actual_paths, ref_paths, . . .)

REFERENCE TEST SUPPORT
UNSTRUCTURED (STRING) METHODS

EXERCISE 1: STRING DATA REFERENCE TESTS

1. referencetest_examples/generators.py has two
functions, each of which generates HTML.

•generate_string() returns the top web HTML page as a file
•generate_spiral() returns the bottom HTML web page as a
string

• We’re going to looks at two tests, and what happens 
if we change the output.

— for the first page, our test will write it to file

— for the second page, our test will keep it in memory

BACKGROUND

EXERCISE 1: STRING DATA REFERENCE TESTS

1. Copy examples somewhere:
 cd ~/tmp

 tdda examples

 cd referencetest_examples

2. Look at reference output:
 open reference/string_result.html

 open reference/file_result.html

3. Run tests (should pass).
 python unittest/test_using_referencetestcase.py

 or (cd pytest; pytest)

Although tests pass, output is not identical

— version number and copyright lines in reference files are different
NOTE

self.assertFileCorrect(outpath, 'file_result.html',

 ignore_patterns=['Copyright', 'Version'])

(This will be clearer after next part of exercise.)

I. CHECK THE TESTS PASS

… Use whatever your platform’s
command for opening an HTML file is

EXERCISE 1 (CTD): STRING DATA REFERENCE TESTS

4. Modify generators.py

e.g. Capitalise terribly to very in the generate_string function
e.g. Change C08080 to 8080C0 in the generate_file function

5. Repeat step 3 to run tests again. Two tests should fail.
 python unittest/test_using_referencetestcase.py

 or (cd pytest; pytest)

6. Check modified results in (reported) temporary directory are as expected;
run the suggested diff command or something similar (opendiff, fc,
…). Again, note that in addition to the changes you introduced, the
Copyright and Version lines are different.

II. MODIFY THE GENERATOR, CHECK RESULTS

TAGGING TESTS TO RUN A SUBSET
You can “tag” single individual tests or whole test classes to allow only those ones
to be run with when running with --tagged (unittest also supports -1)

from tdda.referencetest import ReferenceTestCase, tag

class TestDemo(ReferenceTestCase):

 def testOne(self):

 self.assertEqual(1, 1)

 @tag

 def testTwo(self):

 self.assertEqual(2, 2)

 @tag

 def testThree(self):

 self.assertEqual(3, 3)

 def testFour(self):

 self.assertEqual(4, 4)

if __name__ == '__main__':

 ReferenceTestCase.main()

$ python3 tests.py -1

..

Ran 2 tests in 0.000s

OK

$ python3 tests.py -0

__main__.TestDemo

OK

See what classes have tagged tests
with --istagged (unittest: or -0)

This is especially recommended if when you want to rewrite test results; 
it’s better only to re-write the results for a specific test, rather than for all tests.

EXERCISE 1 (CTD): STRING DATA REFERENCE TESTS

7. On the assumption that these now represent the verified,* new target
results, re-write the reference output with:

 python unittest/test_using_referencetestcase.py -1 -W

 or (cd pytest; pytest --write-all -s)

8. Repeat step 5 to run tests again. All tests should pass.

III. RE-WRITE REFERENCE RESULTS

* WARNING
If you habitually re-write results when tests fail without carefully verifying the new results, 

your tests will quickly become worthless.
With great power comes great responsibility: use TDDA referencetest’s (re-)write flags wisely!

only tagged tests
re-write reference results

9. Modify generators.py code to change version number in output.
10. Repeat step 3 to run tests again. All tests should still pass since

version number is excluded by 
 
 ignore_substrings=['Copyright', 'Version'] 
 
parameter to assertStringCorrect.

EXERCISE 1 (CTD): STRING DATA REFERENCE TESTS
IV. MODIFY THE RESULTS VERSION NUMBER; CHECK STILL OK

REFERENCE TEST SUPPORT

• Comparing generated DataFrame or parquet or CSV file to a reference  
DataFrame or parquet file or CSV file

• Show specific diff command needed to examine differences
• Check multiple CSV/parquet files in single test; report all failures
• Choose subset of columns (with list or function) to compare
• Choose whether to check (detailed) types
• Choose whether to check column order
• Choose whether to ignore actual data in particular columns
• Choose precision for floating-point comparisons
• Automatic re-writing of verified (changed) results.

2: STRUCTURED DATA METHODS (DATAFRAMES & CSV)

Check a single generated CSV/parquet file against a refererence CSV/parquet file

self.assertOnDiskDataFrameCorrect(actual_path, ref_path, . . .)

Check multiple generated files against respective reference CSV/parquet files:

self.assertOnDiskDataFramesCorrect(actual_paths, ref_paths, . . .)

Check an (in-memory) DataFrame against a reference CSV/parquet file

self.assertDataFrameCorrect(df, ref_path, . . .)

Check an (in-memory) DataFrame against another (in-memory) DataFrame

self.assertDataFramesEqual(df, ref_df . . .)

REFERENCE TEST SUPPORT
STRUCTURED DATA METHODS (DATAFRAMES & CSV)

EXERCISE 2: DATAFRAME/CSV REFERENCE TESTS

1. If you’ve done Exercise 1, you already have the reference examples in a
(sibling) reference_test_examples directory

 cd ../reference_test_examples
2. Look at reference output:

 reference/dataframe_result.csv

 reference/dataframe_result2.csv

3. Run tests (should pass).
 python unittest/test_using_referencetestcase.py

 (cd pytest; pytest)

NOTE

I. CHECK THAT THE TESTS PASS

from dataframes import generate_dataframe

print(generate_dataframe())

You can look at the data frame being generated with the 2-line program (show.py)

EXERCISE 2: DATAFRAME/CSV REFERENCE TESTS

4. Modify dataframes.py, e.g. Change the default precision from 3 to 2 in the
generate_dataframe function. This will cause the string column s to be
different.

5. Repeat step 3 to run tests again. Three tests should fail.
 python unittest/test_using_referencetestcase.py; cd ..

 or (cd pytest; pytest)

6. Look at the way differences are reported, and check that the only material change
is to column s, as expected.

II. MODIFY THE DATA GENERATOR, VERIFY RESULTS

EXERCISE 2: DATAFRAME/CSV REFERENCE TESTS

7. On the assumption that this new output now represents the new, verified target
result,* re-write the reference output with

 python unittest/test_using_referencetestcase.py -1W

 or (cd pytest; pytest --write-all -s)

8. Repeat step 5 to run tests again. All tests should now pass.

II. RE-WRITE REFERENCE RESULTS; RE-RUN

* WARNING
If you habitually re-write results when tests fail without carefully verifying the new results, your

tests will quickly become worthless.
With great power comes great responsibility: use TDDA Reference Tests wisely!

only tagged tests
re-write reference results

ANALYTICAL

PROCESS

INPUTS OUTPUTS
DATASETS, NUMBERS,

GRAPHS, MODELS,

DECISIONS ETC.

AUTOMATIC TEST GENERATION

Record
(“reference”)

outputs
`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

Develop a verification procedure (diff) and periodically rerun:
do the same inputs (still) produce the same or equivalent outputs?

`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

Record
inputs👤

Capture
as script👤

GENTEST

sh classify.sh

test_sh_classify_sh.py

ref/sh_classify_sh

test script

reference outputs

tdda gentest "sh classify.sh"

`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

Really?

GENTEST
stdout
stderr

exit code

file system changes

environment (path, date, …)

differences between runs
}

“intelligent” decisions
about how and what to test

Gentest
is largely
enabled

by Rexpy!
`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

GENTEST
stdout
stderr

exit code

file system changes

environment (path, date, …)

differences between runs
}

“intelligent” decisions
about how and what to test

Gentest
is largely
enabled

by Rexpy!
`

INSERT
CODE
HERE

COLLECT
TESTS
HERE

Gentest

ART
IFI

CIA
L

INT
ELL

IGE
NCE

⊘

⊘

⊘

⊘

echo “Hey, cats!”

echo

echo "This is gentest, running on `hostname`"

echo

echo "I have to say, the weather was better in Münich!"

echo

echo "Today, `date` it's proper dreich here."

echo

echo "Let's have a file as well." > FILE1

echo

echo "Have a number: $RANDOM" >> FILE1

example1.sh

$ tdda gentest

Enter shell command to be tested: sh example2.sh

Enter name for test script [test_sh_example2_sh]:

Check all files written under $(pwd)?: [y]:

Enter other files to be checked, one per line, then blank line:

Check stdout?: [y]:

Check stderr?: [y]:

Exit code should be zero?: [y]:

Number of times to run script?: [2]:

TDDA Wizard

Running command 'sh example1.sh' to generate output (run 1 of 2).

Saved (non-empty) output to stdout to /Users/njr/tmp/pydata/ref/sh_example1_sh/STDOUT.

Saved (empty) output to stderr to /Users/njr/tmp/pydata/ref/sh_example1_sh/STDERR.

Copied $(pwd)/FILE1 to $(pwd)/ref/sh_example1_sh/FILE1

Running command 'sh example1.sh' to generate output (run 2 of 2).

Saved (non-empty) output to stdout to /Users/njr/tmp/pydata/ref/sh_example1_sh/2/STDOUT.

Saved (empty) output to stderr to /Users/njr/tmp/pydata/ref/sh_example1_sh/2/STDERR.

Copied $(pwd)/FILE1 to $(pwd)/ref/sh_example1_sh/2/FILE1

Test script written as /Users/njr/tmp/pydata/test_sh_example1_sh.py

Command execution took: 0.027s

SUMMARY:

Directory to run in: /Users/njr/tmp/pydata

Shell command: sh example1.sh

Test script generated: test_sh_example1_sh

Reference files:

 $(pwd)/FILE1

Check stdout: yes (was 9 lines)

Check stderr: yes (was empty)

Expected exit code: 0

WIZARD OUTPUT

$ cat /Users/njr/tmp/pydata/test_sh_example2_sh.py

-*- coding: utf-8 -*-

"""

test_sh_example1_sh.py: Automatically generated test code from tdda
gentest.

Generation command:

 tdda gentest 'sh example1.sh' ‘test_sh_example1_sh.py’ '.' STDOUT
STDERR

"""

from __future__ import absolute_import

from __future__ import print_function

from __future__ import division

import os

import sys

from tdda.referencetest import ReferenceTestCase

from tdda.referencetest.gentest import exec_command

COMMAND = 'sh example1.sh'

CWD = os.path.abspath(os.path.dirname(__file__))

REFDIR = os.path.join(CWD, 'ref', 'sh_example1_sh')

GENERATED CODE
class TestAnalysis(ReferenceTestCase):

 @classmethod

 def setUpClass(cls):

 (cls.output,

 cls.error,

 cls.exc,

 cls.exit_code,

 cls.duration) = exec_command(COMMAND, CWD)

 def test_no_exception(self):

 msg = 'No exception should be generated'

 self.assertEqual((str(self.exc), msg), ('None', msg))

 def test_exit_code(self):

 self.assertEqual(self.exit_code, 0)

 def test_stdout(self):

 substrings = [

 'godel.local',

 '9 Apr 2019 17:45:49',

]

 self.assertStringCorrect(self.output,

 os.path.join(REFDIR, 'STDOUT'),

 ignore_substrings=substrings)

 def test_stderr(self):

 self.assertStringCorrect(self.error,

 os.path.join(REFDIR, 'STDERR'))

 def test_FILE1(self):

 patterns = [

 r'^Have a number\: \d{4,5}$',

]

 self.assertFileCorrect(os.path.join(CWD, 'FILE1'),

 os.path.join(REFDIR, 'FILE1'),

 ignore_patterns=patterns)

if __name__ == '__main__':

 ReferenceTestCase.main()

Note exclusions
for local context
and run-to-run

variability

$ ls ref/sh_example1_sh/

2	 FILE1	STDERR	 STDOUT

$ more ref/sh_example1_sh/FILE1

Let's have a file as well.

Have a number: 9310

$ more ref/sh_example1_sh/STDOUT

Hello, Edinburgh PyData!

This is gentest, running on godel.local

I have to say, the weather was better in Münich!

Today, Tue 9 Apr 2019 17:45:49 BST it's proper dreich here.

$ more ref/sh_example1_sh/STDERR

$

SAVED FILES

(This file is empty)

$ python test_sh_example1_sh.py
.....
--
Ran 5 tests in 0.018s

OK

RUNNING THE TESTS

RUNNING REPEATEDLY

If you run enough times, you will get a failure, because the
exclusion is assuming the random number generated will always
be four or five digits.

On the night, it didn’t fail.

But after, I ran it another 33 times, and the last time it failed.

WHEN IT DOES FAIL
$ python test_sh_example1_sh.py
1 line is different, starting at line 2
Compare with:
 diff /Users/njr/tmp/pydata/FILE1 /Users/njr/tmp/pydata/ref/sh_example1_sh/FILE1

Note exclusions:
 ignore_patterns:
 ^Have a number\: \d{4,5}$
F....
==
FAIL: test_FILE1 (__main__.TestAnalysis)
--
Traceback (most recent call last):
 File "test_sh_example1_sh.py", line 61, in test_FILE1
 ignore_patterns=patterns)
 File "/Users/njr/python/tdda/tdda/referencetest/referencetest.py", line 857, in assertTextFileCorrect
 self._check_failures(failures, msgs)
 File "/Users/njr/python/tdda/tdda/referencetest/referencetest.py", line 1046, in _check_failures
 self.assert_fn(failures == 0, msgs.message())
AssertionError: 1 line is different, starting at line 2
Compare with:
 diff /Users/njr/tmp/pydata/FILE1 /Users/njr/tmp/pydata/ref/sh_example1_sh/FILE1

Note exclusions:
 ignore_patterns:
 ^Have a number\: \d{4,5}$

--
Ran 5 tests in 0.018s

FAILED (failures=1)

AND IF YOU RUN THE DIFF:
$ opendiff /Users/njr/tddacourse/FILE1 /Users/njr/tmp/tddacourse/ref/sh_example1_sh/FILE1

It is indeed that \d{4,5} is too specific to capture all the variation.
(In this case, it’s just two digits!)
Easily fixed by hand.

ERRORS OF INTERPRETATION

(a.k.a. TYPE VI ERRORS)

Mars

Climate

Orbiter

NASA (SI) 
Newton-seconds

v.

Lockheed Martin (FPS)

Pounds (force)

-seconds

m metres

m miles

m milli

m million

M Million (Mega)

M Thousand

Mi 220 (1,048,576)

MM Million

k Thousand

K 210 (1024)

K Kelvin

bn 109

bn 1012

B 109; 1012

90° π/2

90° 45% alcohol

90° nearly boiling (°C)

90° wear suscreen (°F)

calories • Calories • kcal

pt 20 fl oz • 16oz

pt 1/72.27” • 1/72”

Which class are

we predicting?

99.9983%

Regression to the mean

Time

Clustering Considered Harmful
http://www.scientificmarketer.com/2009/03/clustering-

considered-harmful-i-outline.html

Unsupervised

Non-commensurate variables

Often unstable

People mostly look

at cluster names

Distance function

defines clusters

Curse of dimensionality

DATA SCIENTISTS: JUST SAY NO!

http://www.scientificmarketer.com/2009/03/clustering-considered-harmful-i-outline.html
http://www.scientificmarketer.com/2009/03/clustering-considered-harmful-i-outline.html

“Type I”

&

“Type II”

Errors

h
t
t
ps
://xkcd.com/2303

01/02/12

Significant Figures

& Spurious Precision

Table 2: World Water
km3 Per cent

Fresh Water

 Clouds 20,000 000

 Continental Water 9,000,000 001

 Ice 30,000,000 002

Salt Water

 Oceans 1,300,000,000 097

Total water 1,339,020,000 100

Source: Not: Sustainability: A Systems Approach. A M H Clayton & N J Radcliffe

Source: Sustainability: A Systems Approach. A M H Clayton & N J Radcliffe

.

km3 Per cent

Percentage Changes

“Relative vs. Absolute risk”

1% 1.1% +10%
+0.1pp

Increase

JUNK CHARTS
Dual Axis

Non-uniform scale

False zero*

False zero colour*

Area, Volume

Inverted

Bezos charts

Unclear labels

Unclear tick labels

No units

Questionable lines
of best fit

* When zero is meaningful

GRAPHING BEST PRACTICES

Annotate

Maximize Data Ink

Minimize chart junk

Direct labelling

Error bars

Pie charts are OK!

Units

Zoomed sections for
detail & context

Broken axes where
required

01/02/12
(2 Dec 2101)

>>> datetime.date(2101,12,2).strftime('%y/%d/%m')

'01/02/12'

njr@stochasticsolutions.com

#tdda* *tweet (DM) us email address for invitation
 Or email me.

http://tdda.info

http://stochasticsolutions.com

https://github.com/tdda

 @njr@zirk.us

http://linkedin.com/in/njradcliffe

@tdda@mathstodon.xyz

https://stochasticsolutions.com/pdf/tdda-london-2024.pdf

http://tdda.info
http://stochasticsolutions.com
https://github.com/tdda
https://zirk.us/@njr
http://linkedin.com/in/njradcliffe
https://mathstodon.xyz@tdda
https://stochasticsolutions.com/pdf/tdda-london-2024.pdf

