
THE SCIENCE OF BAD DATA

Nicholas J. Radcliffe
Stochastic Solutions Limited

& Department of Mathematics, University of Edinburgh

DataTech 2019 • DataFest • 14th March 2019

http://stochasticsolutions.com/pdf/science-of-bad-data-datatech-2019.pdf

http://stochasticsolutions.com/pdf/science-of-bad-data-datatech-2019.pdf

AUTOMATION RISKS

AUTOMATED DECISIONSDATA VOLUME

Reputational risk
Concentration risk

Model risk

SOFTWARE DEVELOPMENT (WITH TDD*)

Write some
(failing) tests

Write/change code
to make tests pass

Simplify
code

Add functionality
/ Fix bugsOften:

• Well-understood inputs
• Well-understood goal
• Many kinds of errors/failures are unmistakable

Constantly run
tests with CI?

*test-driven
 development

Why is this
lying bastard
lying to me?

— Jeremy Paxman

We need to extend TDD’s idea of testing for
software correctness

with the idea of testing for
meaningfulness of analysis,

correctness and validity of input and output data,
& correctness of interpretation.

TDD ↦ TDDA

“test-driven data analysis”

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

DEVELOPMENT PHASE

Using sample/initial
datasets & inputs to
develop the process

✔

OPERATIONAL PHASE

Using the process with other
datasets and inputs, possibly

having different characteristics

RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions &
deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

(bugs)

INITIAL
SUCCESS

CHOOSE  
APPROACH

ERROR OF
INTERPRETATION

✔

✗

Fail to
understand

data,
problem
domain,

or methods

DEVELOP
ANALYTICAL

PROCESS

ERROR OF
IMPLEMENTATION

✗
Mistakes
during
coding

✔ RUN
ANALYTICAL

PROCESS

ERROR OF
PROCESS

✗
Use the
software

incorrectly SUCCESS

ERROR OF
APPLICABILITY

✔

✗

Mismatch
between

development
data or

assumptions &
deployment

data

PRODUCE
ANALYTICAL

RESULTS

✔ INTERPRET
ANALYTICAL

RESULTS

✔

Misinterpret
results ✗

80%

20%

70%

30%

90%

10%

80%

20%

90%

20%

36%

If you buy into this model, it’s sobering to attach
probability estimates to each transition and calculate the

probability of success after a few runs . . .

23%
19%

10%

⋱
(bugs)

10%

Garbage OutGarbage In •
Error

Warning

Gospel OutGarbage In •

Garbage OutGold In •

1. Constraint Discovery & Verification

2. Reference Tests

2a. Automatic Test Generation (currently in alpha)

TEST-DRIVEN DATA ANALYSIS:
MAIN IDEAS

1. Constraint Discovery & Verification
• a bit like unit tests for data
• can cover inputs, outputs and intermediate results
• automatically discovered
• Use as part of analysis to verify inputs, outputs and intermediates (as appropriate)

2. “Reference” Tests
• cf. system/integration tests in TDD
• With support for exclusions, regeneration, helpful reporting etc.
• Re-run these tests all the time, everywhere

2a. Automatic Test Generation (currently in alpha)
• Give tdda gentest a command/script to run.
• It generates tests for you.

TDDA: MAIN IDEAS

Install from PyPI (recommended)

 pip install tdda

or from Github (source)

 git clone https://github.com/tdda/tdda.git

 python setup.py install

TDDA LIBRARY

https://github.com/tdda/tdda.git

TDDA LIBRARY
• Runs on Python 2 & Python 3, Mac, Linux & Windows, under
unittest and pytest

• MIT Licensed
• Documentation:

• Sphinx source in doc subdirectory
• Built copy at http://tdda.readthedocs.io

• Quick reference:
 http://www.tdda.info/pdf/tdda-quickref.pdf

http://tdda.readthedocs.io
http://www.tdda.info/pdf/tdda-quickref.pdf

CONSTRAINT GENERATION,
VERIFICATION

& ANOMALY DETECTION

CONSTRAINTS
• Very commonly, data analysis uses data tables (e.g. DataFrames,

RDBMS tables) as inputs, outputs and intermediate results

• There are many things we know (or at least expect) to be true
about these data tables

• Could write down all these expectations as constraints and
check that they are actually satisfied during analysis . . . but  
life’s too short! (Also: humans are rather error-prone)

THE BIG IDEA
• Get the computer to discover constraints satisfied by example

datasets automatically.

• Verify against these constraints, modifying as required

• (Humans much happier to make tweaks than start from scratch)

DATA VERIFICATION

{
C1: …
C2: …
C3: …

 ⋮
}

OPERATIONAL  
DATA

VERIFICATIONCONSTRAINTS

FAILING
DATA

REPORT

ALERTS

AUTOMATIC CONSTRAINT GENERATION

{
C1: Age ≥ 0
C2: ID is not null
C3: CardNumber ~

DDDD DDDD DDDD DDDD
 ⋮
}

TRAINING  
DATA

AUTOMATIC
DISCOVERY

OF
CONSTRAINTS

DISCOVERED
CONSTRAINTS

(believed to
be “good”)

GENERATING CONSTRAINTS
& VERIFYING DATA

DISCOVER ADAPT VALIDATE

DEVELOPMENT

training data

VERIFY MONITOR REFINE

USE

operational data

EXAMPLE CONSTRAINT DISCOVERY

$ tdda discover -r training.csv constraints.tdda
{
 "creation_metadata": {
 "local_time": "2019-03-07 08:08:56",
 "utc_time": "2019-03-07 08:08:56",
 "creator": "TDDA 1.0.21",
 "source": "data.csv",
 "host": "bartok.local",
 "user": "njr",
 "dataset": "data.csv",
 "n_records": 20,
 "n_selected": 20,
 "tddafile": "constraints.tdda"
 },
 "fields": {
 .
 .
 .

EXAMPLE CONSTRAINT DISCOVERY

"account_number": {
 "type": "int",
 "min": 10074173,
 "max": 12923415,
 "sign": "positive",
 "max_nulls": 0,
 "no_duplicates": true
},
"open_date": {
 "type": "date",
 "min": "2003-01-17 00:00:00",
 "max": "2018-11-02 00:00:00",
 "max_nulls": 0
},
"close_date": {
 "type": "date",
 "min": "2011-11-14 00:00:00",
 "max": "2014-04-03 00:00:00"
},

EXAMPLE CONSTRAINT DISCOVERY

"postcode": {
 "type": "string",
 "min_length": 7,
 "max_length": 8,
 "max_nulls": 0,
 "no_duplicates": true,
 "rex": ["^[A-Z]{2}\\d{1,2} \\d[A-Z]{2}$"]
},
"account_type": {
 "type": "string",
 "min_length": 6,
 "max_length": 8,
 "max_nulls": 0,
 "allowed_values": [
 "current",
 "current+",
 "offset”
],
 "rex": ["^[a-z]{6,7}$", "^current\\+$"]
},

EXAMPLE CONSTRAINT DISCOVERY

 "overdraft_limit": {
 "type": "int",
 "min": 0,
 "max": 16800,
 "sign": "non-negative",
 "max_nulls": 0
 }
 }
}

$ tdda verify training.csv constraints.tdda

account_number: 0 failures 6 passes
 type ✓ min ✓ max ✓ sign ✓ max_nulls ✓ no_duplicates ✓

open_date: 0 failures 4 passes
 type ✓ min ✓ max ✓ max_nulls ✓

close_date: 0 failures 3 passes
 type ✓ min ✓ max ✓

postcode: 0 failures 6 passes
 type ✓ min_length ✓ max_length ✓ max_nulls ✓
 no_duplicates ✓ rex ✓

account_type: 0 failures 6 passes
 type ✓ min_length ✓ max_length ✓ max_nulls ✓
 allowed_values ✓ rex ✓

overdraft_limit: 0 failures 5 passes
 type ✓ min ✓ max ✓ sign ✓ max_nulls ✓

Constraints passing: 30 Constraints failing: 0

CONFIRM THAT CONSTRAINTS PASS ON TRAINING DATA

CHECK WHETHER NEW DATA SATISFIES CONSTRAINTS

$ tdda verify operationaldata.csv constraints.tdda

account_number: 2 failures 4 passes
 type ✓ min ✗ max ✗ sign ✓ max_nulls ✓ no_duplicates ✓

open_date: 1 failure 2 passes
 type ✓ min ✗ max ✗ max_nulls ✓

close_date: 2 failures 1 pass
 type ✓ min ✗ max ✗

postcode: 0 failures 6 passes
 type ✓ min_length ✓ max_length ✓ max_nulls ✓
 no_duplicates ✓ rex ✓

account_type: 3 failures 3 passes
 type ✓ min_length ✗ max_length ✓ max_nulls ✓
 allowed_values ✗ rex ✗

overdraft_limit: 1 failure 4 passes
 type ✓ min ✓ max ✗ sign ✓ max_nulls ✓

Constraints passing: 21 Constraints failing: 9

$ tdda detect operationaldata.csv constraints.tdda failures.csv

account_number: 2 failures 4 passes
 type ✓ min ✗ max ✗ sign ✓ max_nulls ✓ no_duplicates ✓

open_date: 1 failure 2 passes
 type ✓ min ✗ max ✗ max_nulls ✓

close_date: 2 failures 1 pass
 type ✓ min ✗ max ✗

postcode: 0 failures 6 passes
 type ✓ min_length ✓ max_length ✓ max_nulls ✓
 no_duplicates ✓ rex ✓

account_type: 3 failures 3 passes
 type ✓ min_length ✗ max_length ✓ max_nulls ✓
 allowed_values ✗ rex ✗

overdraft_limit: 1 failure 4 passes
 type ✓ min ✓ max ✗ sign ✓ max_nulls ✓

Records passing: 76 Records failing: 24

FIND FAILING VALUES IN THE NEW DATA

DETECT FAILURES ON DEVELOPMENT DATA
account
number

open 
date

close  
date postcode account

type
overdraft

limit

account
number
min ok

account 
number 
max ok

open date
min ok

close date
min ok

close date
max ok

account type
min ok

account type
values ok

account type
rex ok

overdraft limit
max ok nfailures

10033300 2005/02/08 ∅ MO73 2YX current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10050552 2009/02/24 ∅ XK5 3NM current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10066665 2003/02/16 ∅ PI9 3BG current+ 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10174458 2011/07/18 2016/09/27 SX5 5PV current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

10278760 2004/05/15 2007/11/20 BA72 8XF current 18,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 2

10352931 2004/06/15 ∅ WJ9 2OA basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10440004 2002/12/19 ∅ YC24 4UT current+ 4,800 ✓ ✓ ✗ ∅ ∅ ✓ ✓ ✓ ✓ 1

10476972 2018/01/27 ∅ OE5 9UI current 17,400 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10699455 2018/09/17 ∅ GQ1 9IV current 19,200 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10717064 2003/11/30 ∅ VM1 8WR current 20,000 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10824167 2008/05/21 ∅ NI55 0OS basic 1,400 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10902721 2005/10/30 ∅ LL22 5UX current 17,100 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10962316 2003/12/25 2005/02/25 XX9 2RP current 4,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11005672 2007/06/10 ∅ ZT64 3WP basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11385380 2015/08/07 ∅ WC47 7OA current+ 19,900 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

11589140 2007/11/04 ∅ PF53 9BM basic 8,300 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11604974 2008/04/27 2010/02/18 XE76 8YA current 2,800 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11705553 2014/05/02 2018/05/05 LK55 9TE current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

11816734 2012/04/27 ∅ SS73 8VO basic 15,200 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11957115 2007/04/01 ∅ WO8 7QE current 19,500 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

12086022 2013/05/29 2016/10/28 UA06 1CI premium 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 2

12899220 2014/09/08 2015/06/08 UX80 2RO current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

12940182 2017/12/13 ∅ WA93 4SW current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

12987964 2015/08/27 ∅ SD83 3CR current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

DETECT FAILURES ON DEVELOPMENT DATA
account
number

open 
date

close  
date postcode account

type
overdraft

limit

account
number
min ok

account 
number 
max ok

open date
min ok

close date
min ok

close date
max ok

account type
min ok

account type
values ok

account type
rex ok

overdraft limit
max ok nfailures

10033300 2005/02/08 ∅ MO73 2YX current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10050552 2009/02/24 ∅ XK5 3NM current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10066665 2003/02/16 ∅ PI9 3BG current+ 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10174458 2011/07/18 2016/09/27 SX5 5PV current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

10278760 2004/05/15 2007/11/20 BA72 8XF current 18,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 2

10352931 2004/06/15 ∅ WJ9 2OA basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10440004 2002/12/19 ∅ YC24 4UT current+ 4,800 ✓ ✓ ✗ ∅ ∅ ✓ ✓ ✓ ✓ 1

10476972 2018/01/27 ∅ OE5 9UI current 17,400 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10699455 2018/09/17 ∅ GQ1 9IV current 19,200 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10717064 2003/11/30 ∅ VM1 8WR current 20,000 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10824167 2008/05/21 ∅ NI55 0OS basic 1,400 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10902721 2005/10/30 ∅ LL22 5UX current 17,100 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10962316 2003/12/25 2005/02/25 XX9 2RP current 4,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11005672 2007/06/10 ∅ ZT64 3WP basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11385380 2015/08/07 ∅ WC47 7OA current+ 19,900 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

11589140 2007/11/04 ∅ PF53 9BM basic 8,300 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11604974 2008/04/27 2010/02/18 XE76 8YA current 2,800 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11705553 2014/05/02 2018/05/05 LK55 9TE current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

11816734 2012/04/27 ∅ SS73 8VO basic 15,200 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11957115 2007/04/01 ∅ WO8 7QE current 19,500 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

12086022 2013/05/29 2016/10/28 UA06 1CI premium 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 2

12899220 2014/09/08 2015/06/08 UX80 2RO current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

12940182 2017/12/13 ∅ WA93 4SW current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

12987964 2015/08/27 ∅ SD83 3CR current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

indicator columns
for each failing constraint

original data
for failing records

number of failures
for each record

account
number

open 
date

close  
date postcode account

type
overdraft

limit

account
number
min ok

account 
number 
max ok

open date
min ok

close date
min ok

close date
max ok

account type
min ok

account type
values ok

account type
rex ok

overdraft limit
max ok nfailures

10033300 2005/02/08 ∅ MO73 2YX current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10050552 2009/02/24 ∅ XK5 3NM current 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10066665 2003/02/16 ∅ PI9 3BG current+ 0 ✗ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

10174458 2011/07/18 2016/09/27 SX5 5PV current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

10278760 2004/05/15 2007/11/20 BA72 8XF current 18,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 2

10352931 2004/06/15 ∅ WJ9 2OA basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10440004 2002/12/19 ∅ YC24 4UT current+ 4,800 ✓ ✓ ✗ ∅ ∅ ✓ ✓ ✓ ✓ 1

10476972 2018/01/27 ∅ OE5 9UI current 17,400 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10699455 2018/09/17 ∅ GQ1 9IV current 19,200 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10717064 2003/11/30 ∅ VM1 8WR current 20,000 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10824167 2008/05/21 ∅ NI55 0OS basic 1,400 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

10902721 2005/10/30 ∅ LL22 5UX current 17,100 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

10962316 2003/12/25 2005/02/25 XX9 2RP current 4,000 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11005672 2007/06/10 ∅ ZT64 3WP basic 0 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11385380 2015/08/07 ∅ WC47 7OA current+ 19,900 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

11589140 2007/11/04 ∅ PF53 9BM basic 8,300 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11604974 2008/04/27 2010/02/18 XE76 8YA current 2,800 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ 1

11705553 2014/05/02 2018/05/05 LK55 9TE current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

11816734 2012/04/27 ∅ SS73 8VO basic 15,200 ✓ ✓ ✓ ∅ ∅ ✗ ✗ ✗ ✓ 3

11957115 2007/04/01 ∅ WO8 7QE current 19,500 ✓ ✓ ✓ ∅ ∅ ✓ ✓ ✓ ✗ 1

12086022 2013/05/29 2016/10/28 UA06 1CI premium 0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 2

12899220 2014/09/08 2015/06/08 UX80 2RO current 0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 1

12940182 2017/12/13 ∅ WA93 4SW current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

12987964 2015/08/27 ∅ SD83 3CR current 0 ✓ ✗ ✓ ∅ ∅ ✓ ✓ ✓ ✓ 1

account
number

10033300
10050552
10066665

account number
min ok

✗

✗

✗

"account_number": {
 "type": "int",
 "min": 10074173,
 "max": 12923415,
 "sign": "positive",
 "max_nulls": 0,
 "no_duplicates": true
},

nfailures

1
1
1

Rexpy
Automatic construction of regular expressions

from data

REGULAR EXPRESSIONS
212–988–0331
476 123 8829

1 701 734 9288
 (617) 222 0529

^1?[\(]?\d{3}\)?[\–]\d{3}[\–]\d{4}$
digits

(3)
digits

(3)
digits

(3)
start

of
line

end
of

line

space
or

hyphen

space
or

hyphen

optional
space

or open
bracket

optional
close

bracket

optional
1

^\d{3}\–\d{3}\–\d{4}$

212–977–0331

^\d+\–\d+\–\d+$

^[12]{3}\–[7–9]{3}\–(0|1|3){4}$

+ means “1 or more times”

specific digits

^212\–977\–0331$totally specific (overfitted)

^.*$
. matches any char
* means “0 or more times”

totally unspecific (underfitted)
(matches all strings)

What Rexpy produces

REGULAR EXPRESSIONS

MN 55402
OH 45202

^[A-Z]{2} [0-9]{5}$

REGULAR EXPRESSIONS

Some people, when confronted
with a problem, think

“I know, I’ll use regular expressions.”

Now they have two problems.

— Jamie Zawinski
 comp.emacs.xemacs, 1997

Powerful
Fast

Widely supported
Hard to write

Harder to read

Hard to quote/escape†
Harder still to debug

*Ugly

† r'...' is your friend*Extremely . . .

CONSPROS

Why not let
the computer do

the work?

$ rexpy
212-988-0321
987-654-3210
476 123 8829
123 456 7890
701 734 9288
177 441 7712

^\d{3}\-\d{3}\-\d{4}$
^\d{3}\ \d{3}\ \d{4}$

Rexpy currently never groups
white space with punctuation

rexpy.herokuapp.com

http://rexpy.herokuapp.com
http://rexpy.herokuapp.com
http://rexpy.herokuapp.com

REFERENCE TESTS
&

AUTOMATIC TEST GENERATION
WITH TDDA GENTEST

ANALYTICAL
PROCESS

INPUTS OUTPUTS
DATA

& PARAMETERS
DATASETS, NUMBERS,

GRAPHS, MODELS,
DECISIONS ETC.

REFERENCE TESTS

Develop a verification procedure (diff) and periodically rerun:
do the same inputs (still) produce the same (or equivalent) outputs?

Record
inputs

Capture as
scripted, parameterised
executable procedure

Record
(“reference”)

outputs
(“reproducible research”)

REFERENCE TEST SUPPORT

• Comparing actual string (in memory or in file) to reference
(expected) string (in file)

• Exclude lines with substrings or regular expressions
• Preprocess output before comparison
• Write actual string produced to file when different
• Show specific diff command needed to examine differences
• Check multiple files in single test; report all failures
• Automatically re-write reference results after human verification.

1: UNSTRUCTURED (STRING) RESULTS

REFERENCE TEST SUPPORT

• Comparing generated DataFrame or CSV file to reference DataFrame or CSV file
• Show specific diff command needed to examine differences
• Check multiple CSV files in single test; report all failures
• Choose subset of columns (with list or function) to compare
• Choose whether to check (detailed) types
• Choose whether to check column order
• Choose whether to ignore actual data in particular columns
• Choose precision for floating-point comparisons
• Automatic re-writing of verified (changed) results.

2: STRUCTURED DATA METHODS (DATAFRAMES & CSV)

ANALYTICAL
PROCESS

INPUTS OUTPUTS
DATASETS, NUMBERS,

GRAPHS, MODELS,
DECISIONS ETC.

AUTOMATIC REFERENCE TESTS

Record
(“reference”)

outputs

Develop a verification procedure (diff) and periodically rerun:
do the same inputs (still) produce the same or equivalent outputs?

Record
inputs👤

Capture
as script👤

coming soon!

GENTEST

sh classify.sh

test_sh_classify_sh.py

ref/sh_classify_sh

test script

reference outputs

tdda gentest "sh classify.sh"

Really?

GENTEST
stdout
stderr

exit code

file system changes

environment (path, date, …)

differences between runs
}
(artificially) intelligent decisions

about how and what to test

Gentest
is largely
enabled

by Rexpy!

Testing Data & Data Processes with AI & Python

Wednesday, 20th March 2019, 14:00, Edinburgh

 http://StochasticSolutions.com/training
http://www.datafest.global/fringe-events

20
MAR

http://StochasticSolutions.com/training
https://www.datafest.global/fringe-events

Correct interpretation: Zero (Error of interpretation: Letter “Oh”)

njr@StochasticSolutions.com

#tdda* *tweet (DM) us email address for invitation
 Or email me.

http://tdda.info

http://stochasticsolutions.com

https://github.com/tdda

@tdda0 @njr0 @StochasticSolns

http://stochasticsolutions.com/pdf/science-of-bad-data-datatech-2019.pdf

http://linkedin.com/in/njradcliffe

/training

http://stochasticsolutions.com/pdf/science-of-bad-data-datatech-2019.pdf
http://stochasticsolutions.com/training

