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Abstract
The limitations of linear chromosomes and conventional recombination operators are re-

viewed. It is argued that there are at least three classes of problems for which such repres-
entations and operators are likely to be ineffective. Methods for constructing operators which
manipulate more complex structures with evolutionary search methods are presented, and it is
argued that whenever possible, genetic operators and analogues of schemata should be defined
directly in space of phenotypes, rather than in the genotype (representation) space.

1. INTRODUCTION

This paper considers the implications of earlier theoretical work on evolutionary search
concerning the relationship between genetic representation, idealised genetic operators and
performance correlations between solutions in the search space. The central thesis of the paper
is that for many problems conventional linear chromosomes and recombination operators are
inadequate for effective genetic search, and that for general problems non-linear representations
are required. Section 2 considers representation issues in the abstract, focusing initially on
the genotype-phenotype mapping, intrinsic parallelism and the ability of schemata to capture
important regularities in performance characteristics in the search space, before discussing the
various ways in which different workers have tried to respond to perceived limitations. Section 3
discusses various generalisations of the standard analysis of genetic algorithms, which are then
used to explore three specific limitations of linear chromosomes with conventional operators.
Briefly, these limitations arise when schemata are unable to describe important subsets of the
search space (section 4), when key characteristics of solutions cannot by independently assigned
(section 5), and when constraints are involved (section 6). The paper closes with a summary.

2. REPRESENTATION

2.1. The Genotype-Phenotype Mapping
In natural systems the distinction between genotype and phenotype is reasonably clear and

has physical meaning: DNA is quite literally decoded to build a physical realisation of the
system it “describes”. It is therefore unsurprising that the same distinction is made in genetic
algorithms andevolutionstrategies. A distinction between genotype and phenotype is not,
however, necessary for evolution, for while it is trivially the case that in order to use a computer
to manipulate any structures which are not naturally resident in a computer, a (computer)
representation of them must be chosen, there is no requirement that the idealised genetic
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operators used in evolutionary search be defined with respect to the chosen representation,
nor indeed with respect to any specific representation. If genetic operators are defined with
respect to the structures which form the search space (the phenotypes), then it suffices that this
specification be capable of being implemented reasonably efficiently on a computer using some
representation.

2.2. Binary Representations and Intrinsic Parallelism
The “American” school of genetic algorithms, initiated by John Holland with the publication

of his seminal bookAdaptation in Natural and Artificial Systems (Holland, 1975), has tended
to focus on linear string representations, and in particular on binary representations. These
are most often manipulated by a rather small set of recombination operators. Initially, simple
(“one-point”) crossover was favoured, but was gradually superseded by two-point crossover,
sometimes in its “reduced surrogate” form (Booker, 1987). More recently,n-point crossover
with n � � (see Eshelmanet al., 1989) and so-called “uniform crossover” (see Syswerda, 1989
and Spears & DeJong, 1991) have also gained wider use. There have always been exponents
of alternative operators and representations, most notably Lawrence Davis (e.g. Davis, 1991),
and perhaps the sharpest controversy has centred upon whether it is appropriate to use binary
representations—whether traditional or Gray-coded (Caruana & Schaffer, 1988)—for problems
in which the parameters under consideration are real (Goldberg, 1990c). In theEvolution-
strategie school, a more relaxed attitude towards alternative operators and representations
appears always to have been taken (Baecket al., 1991).

It is worth pointing out that it has always been accepted even by the mainstream of the
American school that there are certain problems for which alternative operators and repres-
entations must be used, the most widely studied examples being permutation problems such
as the travelling salesrep problem (TSP). Although numerous operators for permutations have
been developed—for examples see Goldberg & Lingle (1985), Oliveret al. (1987), Whitley
et al. (1989), and Fox & McMahon (1991)—and a variation of schema analysis based ono-
schemata has been developed (Goldberg, 1989), permutation problems seem largely to have
been regarded as exceptional.

The comments above notwithstanding, the reasons for the continued dominance of linear
binary representations bear examination. Principal among these is a simple counting argument
introduced by Holland in his original book (Holland, 1975), giving rise to the notion ofintrinsic
parallelism. The familiar observation here is that every chromosome of lengthn is an instance
(member) of�n schemata. If it is accepted that the genetic algorithm processes schemata,
rather than individual chromosomes, which is a possible interpretation of the Schema Theorem
(Holland, 1975) this suggests that representations which maximise�n will give rise to the greatest
degree of intrinsic parallelism. They will thus—it is argued—achieve maximum processing
efficiency. Since chromosome lengthn, and hence�n, is maximised for binary representations,
there is a wide-spread belief that these will be most effective.

There are a number of counter-arguments to this.

1. Representation Independence.
Let S be a search space of sizejSj � �n, and letBn be the set of binary strings of length
n (B � f�� �g). Then there are�n� possible faithful representations ofS, corresponding
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to the�n� invertible mappings in

R � f � j � � S �� B
n

� � injectiveg� (1)

It is both the strength and the weakness of the Schema Theorem that it is independent of
which of these�n� representations is chosen. Yet if a representation� is selected randomly
fromR, it can be expected to preserve no information, and thus the schemata will carry no
significance. In such circumstances, the Schema Theorem notwithstanding, the genetic
algorithm cannot reasonably be expected to make progress faster than a random search.
This is reconciled with the Schema Theorem through the observation that theobserved
fitness of a schema�, given a randomly-selected representation� fromR, is an extremely
poor estimator of the fitness of other members of� not present in the current population,
since there are no expected correlations between the performance of the members of
any schema. Schemata with high variance for fitness cannot, in general, be processed
effectively by genetic algorithms.

The critical point to note from this discussion is not that the genetic search can do no
better than random search given a random representation (no search strategy can given
access only to such a representation) but rather that the Schema Theorem still holds in this
case. The careless interpretation that this suggests that a genetic search will out-perform
a random enumeration is incorrect in these circumstances.

2. Inappropriate Schemata
A search space of size�n has��

n

subsets. Using a base-k representation, only�k � �	n

of these subsets are available for processing as schemata. In many cases, subsets which
group together the chromosomal representatives of solutions which share properties that
might be expected to influence their fitness, not only do not form schemata, but are not
even contained in any schema except the most general one (� � � , where is the
“don’t care” symbol) (Radcliffe, 1990, 1991a). For example, coding the integer range 0
to 15 on four bits in the conventional manner, the representatives of 7 and 8 (����� and
����

�
respectively) share membership of no schema except . Similarly, multiples

of three are grouped together by no (traditional binary) schema except .

3. Not Only Schemata Obey the Schema Theorem
Finally, the counting argument which gives rise to the notion of intrinsic parallelism
suggests that binary representations maximise the degree of intrinsic parallelism only
if attention is restricted to conventional schemata (Radcliffe, 1990). This restriction is
inappropriate, as has been argued by Antonisse (1989), Radcliffe (1991a) and Vose (1991),
and is detailed below in section 3.

2.3. Representations and Operators
Vose & Liepins (1991) have pointed out that the difference between the simplest problems

for genetic search and those normally considered to be the hardest (fully deceptive problems,
Goldberg, 1990a, 1990b) is no more than a change of representation. Vose (1991) has also
introduced the notion of a “global” schema, which is one immune to sampling error by virtue
of being fitter than average in anarbitrary population if it is fitter than average in anyspecific
population.
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It is clear that the fitness variance of schemata is central to the way in which a genetic
algorithm proceeds, for it is theobserved fitness of a schema which occurs in the Schema
Theorem, stochastically determining which schemata are reproduced. The standard (though
largely unspoken) approach is to try to choose representations in which schemata are meaningful,
usually by trying to use genes which form intuitively sensible units of inheritance, in line with
Goldberg’s “principle of meaningful building blocks” (Goldberg, 1989).

An alternative approach to trying to find a representation in which the conventional operators
and schemata are appropriate is to try to define operators which directly manipulate solutions
in “sensible” ways. If this approach is to be taken, the key question becomes the definition of
“sensible” manipulation of solutions and collections of solutions. Three approaches to this can
be distinguished.

1. Countless workers have simply hand-designedad hoc recombination operators which
directly manipulate solutions. Obvious examples include, but are by no means restricted
to, the various permutation operators developed for the TSP and job-shop scheduling.
In some cases the principles used to design the operators have been made explicit. For
example, the “cycle crossover operator” (Oliveret al., 1987) ensures that every position
in the child permutation is identical to the corresponding position in one or other parent.
Whether operators are defined in the abstract or with respect to a particular (usually linear
string) representation varies. An interesting example of defining operators directly in
phenotype space is John Koza’ssubtree-swap recombination operator for manipulating
the parse tree of lisp programs (Koza, 1990).

2. Lawrence Davis (1989) has pioneered and championed an approach which involves
hand-generating several recombination (and other) operators, and applying them all with
probabilities which are adapted by a credit assignment scheme related to “bucket brigade”.
This approach, which has produced impressive empirical results on a range of problems,
allows a degree of automated operator selection, and “hybridisation” with domain-specific
heuristics (Davis, 1991).

3. The final approach is to try to specify in the abstract what is meant by “sensible” prop-
erties for recombination and other operators. This approach has been taken independ-
ently, though formulated very differently, by Vose and Liepins (Vose, 1991, Vose &
Liepins, 1991) and by Radcliffe (Radcliffe, 1990, 1991a, 1991b, 1992c). Their observa-
tions and principles for operator design have significant overlap, and form the basis for
the rest of this paper.

3. GENERALISATIONS OF SCHEMA ANALYSIS

3.1. Generalised Schemata and Intrinsic Parallelism Redux
Antonisse (1989) argued that higher cardinality representations offer a higher degree of

intrinsic parallelism than binary representations because the “don’t care” charactershould be
interpreted not simply as a wildcard, but as the power set of the allele set for its position. The
Schema Theorem still applies to these extended schemata, and the degree of intrinsic parallelism
is higher than for binary representations (Antonisse, 1989).
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Vose (1991) and Radcliffe (1991a) have gone further, independently demonstrating that the
“Schema” Theorem actually applies toarbitrary subsets of the search space provided only that
the disruption coefficients for the chosen operators are computed appropriately. Radcliffe terms
these arbitrary subsetsformae, whereas Vose calls thempredicates. Given a recombination
operator, Vose & Liepins (1991) tried to select the predicates (subsets of the representation
space) which the operator could manipulate effectively, and formulated this in terms of alattice
of predicates. Radcliffe sought to use formae to capture information aboutrelevant subsets of
the search space, and then to constrain genetic operators to manipulate agiven collection of
formae effectively. Radcliffe’s formulation interprets formae as equivalence classes induced by
arbitrary equivalence relations over the search space.

3.2. Respect and Invariance
Perhaps the most basic condition to impose on recombination operators is that if both parents

are members of some forma, then all of their children produced by recombination should also
be members of that forma. Radcliffe (1991a) says that a recombination operator which ensures
this respects a given set of formae. Equivalently, Vose (1991) says that a lattice of predicates
for which this holds true isinvariant under the given recombination operator.

For example, suppose that eye colour is deemed to be an important determinant of fitness for
humans. Eye colour is an equivalence relation which partitions people into equivalence classes
(formae) labelled green, blue, brown and so forth. A recombination operator which respects
eye colour would ensure that all children born of two blue-eyed parents had blue eyes. The idea
is to specify a number of equivalence relations, which between them completely specify each
possible solution, and to ensure that they are simultaneously respected.

Respect (or equivalently, invariance) helps to ensure that once found, useful information is
retained and exploited. All of the standard crossover operators for linear strings (n-point and
uniform crossovers) respect schemata.

3.3. Assortment, Separability and Closure
In addition to respect/invariance, it is desirable to ensure that useful recombination is possible

so that the properties characterised by the formae/predicates which are present in parents can be
mixed. Radcliffe (1991a) formulates this by saying that a recombination operatorassorts a set
of formae if, given two parent solutions, one of which is a member of some forma��, and the
other of which is a member of some second forma��, the recombination operator is capable of
generating a child in the intersection�

�
� �

�
, provided that this is non-empty. The assortment is

said to beproper if the child can always be generated with a single recombination, andweak if
repeated applications may be required (crossing one parent with its partner, and then with some
number of generations of descendents).

For example, suppose that eye and hair colour have been chosen as equivalence relations to
induce formae. Then if one parent has blue eyes and the other has brown hair, and providing
that these are not incompatible characteristics, an assorting recombination operator must be able
to generate a child which has both blue eyes and brown hair. Conventional crossover operators
for linear chromosomes assort schemata. Uniform crossover assorts them properly, butn-point
crossover for anyfixed n assorts them only weakly.

Whereas respect contributes to exploitation of information already collected about formae,
proper assortment contributes to thorough exploration by ensuring that all possible combinations
of formae already found can be generated. (Mutation also plays an important rôle in exploration.)
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Figure 1. The upper tour fragment from a TSP is a member of the forma described byf�
g,
and which contains all tours which include the 2–3 or the 3–2 edge. Similarly, the lower tour
fragment is a member of the forma described byf��g. Both tours are also a member of the
forma described byf��g. Thus, if these formae are to be respected, all children of two tours
containing these fragments must contain the 1–2 edge. This prevents a child being produced
which is a member of the forma described byf�
� ��g, the intersection of those described by
f�
g andf��g, as required by proper assortment. Thus respect and assortment cannot both be
satisfied, so these formae are non-separable (Radcliffe, 1991b).

It is important to note that respect and assortment are not necessarily compatible conditions.
A set of formae which can be simultaneously respected and assorted is said to beseparable,
and a recombination operator which respects and properly assorts them is said toseparate the
formae. Schemata are clearly separable since uniform crossover separates them. An example
of non-separable formae for the TSP is given in Radcliffe (1991b), and summarised in figure 1.
In Radcliffe (1991b) a class ofrandom respectful recombination operators (R�) was introduced
which automatically separate any set of separable formae.

Vose & Liepins (1991) have a related but different way of trying to ensure that effective
recombination can occur, and here the difference of emphasis between fixing the operator and
asking which predicates are manipulated by them and fixing the formae and trying to impose
conditions on the operator comes to the fore. They introduce a notion of aclosed lattice
of predicates, which is essentially one in which it is always possible to make progress from
large predicates (cf. low order schemata) to small predicates (cf. high order schemata) without
violating invariance.

4. PROBLEM I: SEPARABILITY

The discussion above shows that the first difficulty with linear chromosomes and conventional
genetic operators is that there are problems for which conventional schemata cannot capture the
desired characteristics. This is because schemata are separable (can be simultaneously respected
and assorted) whereas some quite reasonable sets of formae, such as those for the TSP discussed
in figure 1, are not separable.

When faced with such a problem, a decision has to be taken as to how best to proceed given
the lack of separability of the desired formae. It should be apparent that the non-separability of
a set of formae is a fundamental difficulty if the formae are believed to be the appropriate ones
for capturing the performance regularities in the search space and it is accepted that respect and
assortment contribute to effective genetic search. Defining an operator which either respects or
assorts an arbitrary set of formae is trivial (Radcliffe, 1990). Radcliffe (1992c) has also shown
that a set of parameterised operators can be introduced which assort arbitrary formae and for
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which the degree of violation of respect can be controlled. In essence, the greater the degree
of violation of respect that is permitted, the more “thorough” is the assortment. Clearly these
options do not exist when using conventional linear string representations and operators which
manipulate schemata.

5. PROBLEM II: LINEAR CHROMOSOMES AND ORTHOGONALITY

Although respect and assortment are not always compatible, they are not particularly strong
conditions. Their most noticeable weakness is that while respect specifies that children must
inherit any shared characteristics of their parents (when these can be expressed as common
forma membership), it says nothing about which characteristics a child should have when its
parents differ. Continuing with the example used earlier, it is desirable that if one parent has
blue eyes and the other has brown eyes then recombination should produce only children with
blue or brown eyes. To impose this, it is necessary to formalise the notion of a gene in the
context of arbitrary formae.

A set� of equivalence relations over a search spaceS will be said tocover S if the two
members of every pair of solutions lie in different equivalence classes (formae) for at least one
relation in�. Such a set of relations can be used to generate a representation forS. An algebraic
structure can be imposed on� by defining the intersection of a set of equivalence relations as
their logical conjunction, so that two solutions are equivalent under a pair of equivalence
relations only if they are equivalent under each of the pair. Given this structure, two kinds
of basis—orthogonal and independent—can be introduced. A subsetE of � will be said to
span � if all of the members of� can be constructed by intersection of the members ofE. A
spanning setE is then said to constitute anorthogonal basis for � (Radcliffe, 1991b) if given
any choice of equivalence class for each of the relations inE, a solution inS exists in their
mutual intersection.E is said to constitute anindependent basis for� (Radcliffe, 1992b) if none
of the members ofE can be constructed by intersecting other members of�. Orthogonality is
the stronger condition, and implies independence (Radcliffe, 1992a).

The equivalence relations in an orthogonal basisE for a set� of equivalence relations which
coversS are calledbasic equivalence relations and play the r̂ole of genes, while thebasic formae
which they induce play the part of alleles. (Basic formae are analogous to first-order schemata,
which are isomorphic to alleles.) In this case, uniform crossover acting on the representation
induced byE separates the formae, which are in this case isomorphic to conventional schemata.
In the more general case, however, only a (non-orthogonal) independent basis can be found for
� (Radcliffe, 1992a). Given only such a basis, the formae induced by the relations in� may or
may not prove to be separable. The basic equivalence relations and basic formae will still play
the respective r̂oles of genes and alleles, but now not all combinations of alleles will be legal,
and it is in this sense that the combination of conventional linear chromosomes and conventional
operators can be seen to be inadequate. If the formaeare separable, theinheritance crossover
operator introduced in Radcliffe (1992b) will separate them and ensure that all genes in the
children are taken from one or other parent; if not, it becomes necessary to sacrifice respect
(and strict gene transmission); the thoroughness of assortment attainable will then depend on the
degree of violation of respect which will be tolerated. The structure of the space of equivalence
relations is shown in figure 2.
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Figure 2. The structure of the space of equivalence relations.

6. PROBLEM III: LINEAR CHROMOSOMES AND CONSTRAINTS

The final problem with linear chromosomes and conventional crossover operators which will
be addressed in this paper concerns general constraints. Constraints are normally considered to
be highly problematical for genetic algorithms, and the “standard” approach is to use penalty
functions to discourage their violation (e.g. Richardsonet al., 1989). These approaches have not,
however, been conspicuously successful. Other workers, including Davis & Steenstrup (1987)
and Michalewicz & Janikow (1991), have addressed this issue and argued for the building of
operators which “understand” the constraints and are guaranteed not to violate them by virtue
of this understanding.

In this context, it is important to distinguish between “real” constraints, such as linear or
polynomial constraints on sets of parameter values, and those which are artifacts of the rep-
resentation employed. For example, the TSP is sometimes viewed as being “constrained” to
have exactly one copy of each city on the chromosome, whereas the more natural interpretation
is that the TSP is anunconstrained search problem in which the search space is the set of
permutations of the city labels. Similarly, if a binary representation is used for a range 0–10,
this is sometimes viewed as a constraint that the values����� to ����� are illegal, whereas in
reality this “constraint” is a mere artifact of the representation used.

In both cases, however, the problem is made significantly easier simply by defining operators
in the real search space and then merely producingimplementations of the designated operators
for the particular representation chosen.

7. SUMMARY

Theoretical developments from other papers have been collected together and used to argue
that the combination of conventional linear chromosomes and standard recombination operators
is inadequate for general problems. Three specific classes of problems for which the conventional
paradigm fails have been discussed, covering cases in which schemata are unable to describe
important subsets of the search space, those in which key characteristics of solutions cannot
be independently assigned, and those in which constraints are involved. In all cases potential
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resolutions have been identified which rely on defining operators directly in the search space
(rather than in the representation space) with the aid of high level constructs calledformae,
which are generalisations of schemata.
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