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Abstract

Intrinsic parallelism is shown to have application
beyond schemata ando-schemata. More general
objects calledformaeare introduced and general
operators which manipulate these are introduced
and discussed. These includerandom, respectful
recombination.The extended formalism is applied
to various common representations and standard
operators are analysed in the light of the formalism.

1 Introduction

The conventional understanding of genetic algorithms at-
tributes much of their power to intrinsic parallelism, the
phenomenon whereby each chromosome is an instance of
many schemata (oro-schemata) and its measured perfor-
mance contributes to an estimated fitness for each of these
schemata. Efforts to maximise the level of intrinsic paral-
lelism available are frequently in conflict with a desire to use
natural representations and operators for the structures in
space being searched. This paper demonstrates that intrin-
sic parallelism is a very general phenomenon, not restricted
to schemata ando-schemata and explores the interaction
between intrinsic parallelism, genetic representations and
operators.

The paper begins (sections 2 & 3) with a review of earlier
work which showed that more general partitions of the
search space than schemata give rise to intrinsicparallelism.
This motivates a shift of emphasis from schemata to more
general kinds of regularities which may be present in the
search space (sections 4 & 6), and allows the introduction
of general-purpose operators—includingso-calledrandom,
respectful recombination—which can be of both analytic
and practical use (section 5). The generalisation of a schema
is called aforma,and in sections 7 to 10 four different types
of formae� are discussed, in conjunction with operators for
their effective manipulation. Before concluding, there is a
discussion of the future directions suggested by this work.

� Although Holland chose the neuter form for the Latin noun schema, there is no
option but to choose the feminine form of its synonym, forma.

2 Analysis of Genetic Algorithms

In his seminal book on adaptation, John Holland [7] con-
sidered chromosomes which werek-ary� strings or similar
and showed that genetic algorithms can usefully be anal-
ysed in terms of their effects on higher-order structures,
variously known asschemata, hyperplanesor similarity
templates. A schema specifies some set of alleles which
the genes of a chromosome must express in order for that
chromosome to be said to be aninstanceof the schema.
Holland derived a simple but immensely significant ex-
pression which bounded the expected number of instances
of any schema in the next generation of the population,
commonly known as the “schema” or “fundamental” theo-
rem. Later, David Goldberg [5, 4] introduced a number of
classes of “o-schemata” which played much the same rˆole
for problems in which the chromosome was a member of
the permutation groupPn (such as the travelling sales-rep
problem, TSP) as did Holland’s original schemata fork-ary
string representations. The following analysis shows that
schemata ando-schemata can both be regarded as exam-
ples of a more general kind of object which we shall term a
forma.

For present purposes it will be convenient to identify a
forma (currently a schema or ano-schema) with the set of
all of its instances, so that if a chromosome� is an instance
of a forma� we shall write���. In this spirit,������ �
where is the “don’t care” symbol.

Recall that the Fundamental Theorem bounds the expected
number of instancesN��t� �� of each forma� in the pop-
ulationB�t� �� by�

N��t� ��

�
� N��t�

����t�

	��t�

�
��

X
���

p�p
�
�

�
�

where����t� is the sample average for utilityof� over all its
instances in the populationB�t� and the termsp�p

�
� in the

sum quantify the disruptiveeffect of each operator�, drawn
from a set
 of genetic operators, on forma membership.

Recall also that thedefining positionsof a forma are those
loci at which a value is specified, so that the forma� �
a b, has defining positions at its second and fourth loci.

� basek, for arbitraryk
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Figure 1: An equivalence relation partitions the space of
chromosomes,C, into a number of equivalence classes or
formae, ��� ��� � � � � �n.

The generalisation sought in this paper requires us to intro-
duce equivalence relations over the search space. Given any
forma�, consider the equivalence relation which relates any
pair of chromosomes having the same alleles at the forma’s
defining positions. We can choose to regard the forma as
an equivalence class induced by this equivalence relation.
Specifically, we can denote the equivalence relation which
induces a b by , which we understand to relate
those chromosomes which have the same values at those
loci marked with the symbol, placing���� and���� in
the forma � � but ���� and���� in the forma � �.
We shall see examples of formae which are less like familiar
schemata in section 10.

Having made this identification, the Fundamental Theo-
rem can be seen to apply toany subset� of the space of
chromosomes,C, provided only that the disruption coeffi-
cientp�� correctly bounds the disruptive effect of applying
the operator� to a chromosome which is a member of
�. In practice we shall choose to regard these subsets as
equivalence classes induced by some set of equivalence
relations—a freedom we always have. For this reason we
shall henceforth use the term “forma” to refer to an equiva-
lence class of any equivalence relation over the spaceC of
chromosomes. Holland’s schemata and Goldberg’s various
o-schemata are then immediately seen to be special cases
of formae. (See figure 1.)

3 Exploiting Intrinsic Parallelism

Holland observed that each evaluation of a chromosome
can be regarded as a statistical sampling event which yields
information about the sample averages for utilityofeachof
the�n schemata of which it is an instance (the phenomenon
referred to as intrinsic parallelism) but of course this ap-
plies equally to any formae we may choose to consider.
The parallelism is exploited by using information gathered
about these higher order structures, the formae, to guide the

further exploration of the space. The critical tasks are thus
finding formae which characterise solutions in meaningful
ways and developing operators which usefully manipulate
these formae.

It is important to notice that the primary factor governing
the expected rate of increase of (instances of) any forma�
is not the mean relative fitness of its members,���	��t�, but
the observedrelative fitness����t��	��t� of its instances in
the populationB�t�. For this reason, our effective exploita-
tion of information about the fitness of various formae is
strictly limited by the reliability of the sample fitness�� ��t�
as an estimator of the mean fitness�� of all instances of
�. This suggests the unsurprising conclusion that we will
only be able to exploit effectively information about formae
whose instances display a low variance for fitness. More
succinctly, only those formae which well-characterise so-
lutions, identifying sets with broadly similar performance,
will be of any value to the search. Thus the degree of in-
trinsic parallelism which can be effectively utilised by the
search is limited to the number of formae which capture
regularities in the performance of solutions over the space
C of chromosomes.

These considerations and others (including Goldberg’s prin-
ciples ofminimal alphabetsandmeaningful buildingblocks,
[4]) led to the proposal of sixdesign principlesfor construct-
ing useful representations, formae and genetic operators
(Radcliffe [10]). In the following, the number of formae
induced by an equivalence relation will be referred to as the
precisionof both the relation and the formae it induces.�

The set of equivalence relations which induce the formae
(equivalence classes) under consideration will be written

and the set of all formae induced by relations in
 will be
denoted�.

Two formae�� ���� will be said to becompatibleif it is
possible for a chromosome to be an instance of both� and
�� (figure 2). In the familiar case of schemata,� � and
� are incompatible, because there is a conflict at the
first locus, whereas� � and�� are compatible.

In general, recombination operators take two chromosomes
and produce different children depending on explicit or
implicit control parameters such as the crosspoint used for
one-point crossover and the binary mask used in uniform
crossover. (See Syswerda [11] and Eshelmanet al [3] for
details of uniform crossover.) A generic recombination
operatorX will be taken to have an associated control set
AX and functional form

X � C � C � AX �� C�

The member of this control set chosen for some particular
recombination completely determines which of the various

� In the case of schemata and genes withk alleles, the precision isk o, whereo is
the order of a schema.
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Figure 2: The formae�� and�� are incompatiblebecause
they have null intersection, whereas�� and�� are compat-
ible because a single chromosome can be an instance of
them both.

possible children results from the cross.

4 Design Principles

The first three design principles are general and suggest de-
sirable characteristics of chromosomal representations and
formae:

1. (Minimal redundancy)The representation should have
minimal redundancy; such redundancy as exists should be
capable of being expressed in terms of the equivalence re-
lations in
.
Ideally, each member of the space being searched should be
represented by only one chromosome inC. This is highly
desirable in order to minimise the size of the search space.
If redundant solutions are related by one of the equivalence
relations used then the genetic algorithm should effectively
be able to “fold out” the redundancy (see principle 4); other-
wise it is doomed to treat redundant solutions as unrelated.

2. (Correlation within formae)Some of the equivalence re-
lations, including some of low precision, must relate chro-
mosomes with correlated performance.
This ensures that useful information can be gathered about
the performance of a forma by sampling its instances. Such
information is used to guide the search. The emphasis is
placed on low-precision formae because these will gen-
erally be less likely to be disrupted by the application of
genetic operators, and are also more likely to be compatible
with one another.

3. (Closure)The intersection of any pair of compatible
formae should itself be a forma.
This ensures that solutions can be specified with different
degrees of accuracy and allows the search gradually to be
refined. Clearly the precision of formae so constructed will
be at least as high as that of the higher-precision of the
intersecting formae.

The remaining three principles concern the way in which
operators manipulate chromosomes and formae. It is help-
ful to use an informal analogy in which chromosomes spec-
ify people and some of the characteristics used to define a
set of formae are hair colour and eye colour. The conse-
quence of each design principle for these formae is given at
the end of each principle.

4. (Respect)Crossing two instances of any forma should
produce another instance of that forma.
Formally, it should be the case that

���� ��� ��� �a�AX � X��� �� a����

whereX is the crossover operator. In this case the cross-
over operator will be said torespectthe equivalence rela-
tions (and their formae). This is necessary in order that the
algorithm can converge on good formae, and implies, for
example, thatX��� �� a� � �, assuming that equivalence
relations of maximum precision specify chromosomes com-
pletely.
[If both parents have blue eyes then all their children pro-
duced by recombination must have blue eyes.]

5. (Proper assortment)Given instances of two compatible
formae, it should be possible to cross them to produce a
child which is an instance of both formae.
Formally,

��� ���� �� � �� �� � e � ���� ������

	 a�AX � X��� ��� a��� � �
�
� (1)

This relates to Goldberg’s “meaningful building blocks”, of
which he writes ([4], p. 373)

‘Effective processing by genetic algorithms oc-
curs when building blocks—relatively short,
low order schemata with above average fitness
values—combine to form optima or near-optima.’

A crossover operator which obeys equation 1 seems very
much more likely to be able to recombine “buildingblocks”
usefully, and any crossover operator which obeys this prin-
ciple will be saidproperly to assortformae.
[If one parent has blue eyes and the other has brown hair it
must be possible to recombine them to produce a child with
blue eyes and brown hair as the result of the cross.]

6. (Ergodicity)It should be possible, through a finite se-
quence of applications of the genetic operators, to access
any point in the search spaceC given any populationB�t�.
This provides theraison d’être for the mutation operator.
[Even if the whole population has blue eyes, it must be pos-
sible to produce a brown-eyed child. The mutation operator
usually ensures this.]
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5 Random, Respectful Recombination

Given a set� of formae, an obvious question is whether
it is possible to construct a recombination operator which
simultaneously respects and properly assorts the formae,
and if so, whether there is more than one such operator.
It is simple to show that not all sets of formae can be so
respected and properly assorted; a set which cannot be is
described in section 9. Those which can be are said to be
separable,and a recombination operator which respects and
properly assorts a set of formae is said toseparatethem.

The principle of respect amounts loosely to the requirement
that characteristics shared by both parents are passed on to
their children. It is useful to define thesimilarity set�
� of
chromosomes� and� as the highest precision forma which
contains them both:

� 
 � �
��

���
�� �� ���� �

In the familiar case of schemata, this is the schema having
the alleles which� and� share at its (only) definitionpoints.
For example,

� � � � � � � �

 � � � � � � � �

� � � �

Respect then amounts to the requirement that all children
produced by recombining� and � be members of their
similarity set:

��� ��C �a�AX � X��� �� a��� 
 ��

Clearly if � is separable (that is, capable of simultaneous
respect and proper assortment) the children required for
proper assortment must also lie in the similarity set of the
parents. It follows that a recombination operator which,
given any pair of parents� and �, returns a randomly-
selected member of�
 �, is guaranteed both to respect and
properly assort the formae. The recombination operator
which makes auniform random choice of children from
the similarity set of the parents is calledrandom, respectful
recombination,which we abbreviate to R� (figure 3).

For example, when crossing the binary chromosomes����
and����, each of the four members of the similarity set
�� (����, ����, ����, and����) is chosen with prob-

ability one quarter by R�.

6 Gene Transmission

It is instructive to notice that in the case of schemata for
binary string representations the R� operator reduces to
uniform crossover (Radcliffe [9]); see Syswerda [11] and
Eshelmanal [3] for details of uniform crossover) but that
this is not so fork-ary representations withk 	 �. For
while uniform crossover requires each allele to be selected

�

��
� � ��

�

�

� 
 �

C

Figure 3: Any pair of chromosomes� and� have asimi-
larity setdenoted� 
 �, which is the smallest forma from
� containing them both. Respect requires that any children
produced by recombining two solutions lie in their similar-
ity set. The R� operator makes a uniform random choice of
child from the parents’ similarity set. If the set of formae,
�, is separable (i.e. capable of simultaneous respect and
proper assortment) then R� will separate them.

randomly from one of the parents, R�, after copying all the
shared alleles to the child, fills in the rest of the chromosome
with genes randomly selected from the allele sets.

In constructing thecyclecrossover operator for permutation
representations ando-schemata, the principal aim of Oliver
et al[8] was to ensure that every allele in the child was taken
from one or other of the parents. More recently, Whitleyet
al [12] have used a similar criterion applied toedgesrather
than vertices of the graph to construct a highly-successful
edge recombinationoperator for the TSP. It would be nat-
ural, therefore, to attempt to formulate a seventh design
principle which specifies that all alleles present in the child
are to be transmitted from one or other of its parents.

The difficulty with this for general representations and for-
mae is that the notion of an allele is not necessarily well-
defined (e.g.locality formae,introduced in section 10). We
can, however, make some progress by introducing the no-
tion of acomplete orthogonal basisfor a set of equivalence
relations
. In the case of schemata ando-schemata the
basisE we shall seek to construct consists of all the rela-
tions with a single definition point. In the case of four-gene
schemata, this gives

E � f � � � g�

We can then define the intersection of compatible relations
in the obvious way (figure 4) so that

� � � � � � � � � � � �

This then allows us to propose the seventh design principle
as follows:

7. (Strict Transmission)Given a complete orthogonal basis
E � 
 for a set of equivalence relations
 over the search
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Figure 4: The set of formae induced by the equivalence
relations
, 
� and
 �
�. The formae induced by
 � 
�

are intersections of those induced by
 and
 �.

space, under each equivalence relation in the basisE, every
child produced by recombination must be equivalent to one
of its parents.
A recombination operator which obeys this principle will
be said to bestrictly transmitting.In the familiar case, this
is precisely the requirement that every allele in the child
come from one parent or the other.
[If one parent has blue eyes and the other has brown eyes,
the child must have blue or brown eyes.]

Formalising the notion of a basis is quite hard, and the
hurried reader can safely skip the rest of this section if
uninterested in the formalism.

We begin by defining intersection for two equivalence rela-
tions. For these purposes an equivalence relation
 is best
described by a binary function


 � C � C �� f �� � g

which returns 1 if its arguments are equivalent and 0 if they
are not:


��� �� �

	
�� if � 
 �,
�� otherwise.

We can then define the intersection of two equivalence re-
lations
� 
� �
 by

�
 � 
����� �� �

	
�� if 
��� �� � 
���� �� � �,
�� otherwise.

Given this, a subsetE � 
 will be said to be a complete
orthogonal basis for
 provided that

� (Completeness) All relations
�
 can be constructed
as as intersection of the basic relations:

�
�
 	E� � E �
�

E� � 
�

� (Orthogonality) Every formaF induced by every ba-
sic relation
�E is compatible with every formaF �

(binary properly strictly
schemata) respect assort transmit

1-point � �
2-point � �
1-pt shuffle � � �
2-pt shuffle � � �
uniform/R� � � �

Table 1: Operators for binary schemata

(k-ary properly strictly
schemata) respect assort transmit

1-point � �
2-point � �
1-pt shuffle � � �
2-pt shuffle � � �
uniform � � �
R� � �

Table 2: Operators fork-ary schemata

induced by every other basic relation
 ��E:

�
� 
� �E �
 �� 
��

�F ��
� �F ���
�� � F � F � �� � e �

where �
� is the set of equivalence classes (formae)
induced by
.

The transmission principle described above is now well-
defined for a general set of formae provided that the equiv-
alence relations inducing these formae have a complete
orthogonal basis associated with them. We can define a
geneas a basic equivalence relation and an allele as one of
the equivalence classes (basic formae) induced by such a
basic equivalence relation, motivating the termgene trans-
mission.

7 Schemata

It is illuminating to classify the standard genetic operators
used for recombiningk-ary chromosomes and schemata.
Tables 1 & 2 show which of the operators respect, properly
assort, and strictly transmit schemata for binary andk-ary
chromosomes respectively.

Notice that every standard crossover operator respects
schemata and is strict in gene transmission, but that tra-
ditional �- and��point crossover do not properly assort
schemata. Plainly, just as R� for binary chromosomes is
identical to uniform crossover, if one modifies it by enforc-
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ing strict gene transmission then uniform crossover is recov-
ered for higherk-ary chromosomes also. These points are
noteworthy principally because of the contrasting situation
for (admittedly more complex) permutation representations
ando-schemata described in the next section.

It should also be pointed out that while proper assort-
ment and strict transmission have been defined as prop-
erties which recombination operators either possess (with
respect to a given set of formae) or do not, in reality there
are degrees of assortment and transmission. We might, for
example, say that traditional crossover (with any number
of cross-points)weakly assortsschemata on the basis that
given a finite number of crosses between the parents and
their various intermediate children it is possible to generate
a child having any admixture of the parents’ genes. Sim-
ilarly, operators which do not enforce strict transmission
of genes from parents to children will nevertheless pass on
genes with some finite probability, giving rise to the notion
of partial transmission.

8 O-schemata

In their paper on the travelling sales-rep problem, Gold-
berg & Lingle [5] introduced both the partially-mapped
crossover (PMX) operator for permutations and the origi-
nalo-schemata. Subsequently Oliveret al [8] introduced a
variation ofo-schemata and Goldberg [4] introduced sev-
eral others. For present purposes we shall consider only the
original o-schemata, which are most similar to schemata;
similar analysis is possible for the other types.

Goldberg’so-schemata are induced by equivalence rela-
tions which relate chromosomes having the same elements
of the permutation in particular positions on the chromo-
some. This seems like a useful and appropriate relation
when the absolute positions of the objects labelled by the
permutation matter. In job-shop scheduling, for example,
the numbers typically represent jobs and the positions on
the chromosome specify on which machines and in which
order the jobs should be placed. In these cases the ab-
solute positions seem relevant and one might reasonably
expect operators which reliably respect, assort and transmit
o-schemata to be of great use. As Whitleyet al [12] have
argued, however, it is not apparent that absolute city posi-
tion is of any great significance in the TSP; this is discussed
further in the next section.

Table 3 shows the way in whicho-schemata are manipu-
lated by four standard crossover operators for permutations
and the R� operator. The operators are Goldberg’s PMX
crossover [5], Oliveret al’s cycle crossover [8], Davis’s
order crossover operator, modified as described in [8], and
what Davis callsuniform (permutation) crossover,which
relates to order crossover in exactly the same way as uni-

properly strictly
o-schemata respect assort transmit

PMX �
cycle � �
order
uniform
R� � �

Table 3: Operators foro-schemata

form crossover relates to traditional 1- and 2-point cross-
over. (The elements from one parent are copied wherever
the binary mask that acts as the control parameter has a 1,
and the remaining elements are used to fill the gaps in the
order that they occur in the other parent.)

The R� operator in this case acts simply by inserting the
common genes straight into the child chromosome and then
arranging the remaining elements of the permutation at ran-
dom in the gaps.

9 Edge Formae

It seems clear, as Whitleyet al [12] have argued, that the
edges rather than the vertices of the graph are central to the
TSP. While there might be some argument as to whether or
not the edges should be taken to be directed, the symme-
try of the euclidean metric used in the evaluation function
suggests that undirected edges suffice.

If the towns (vertices) in ann-city TSP are numbered 1 ton,
and the edges are described as non-ordered pairs of vertices
�a� b�, then apparently suitableedge formaeare simply sets
of edges, subject to the condition that no vertex appears
in the description of more than two edges. Unfortunately,
these formae are not separable. To see this, consider two
tours� and�, with � containing the fragment 2–1–3 and
� containing 4–1–3. Plainly these have the common edge
��� �� �� ��� ���. We shall describe the formae by listing the
edges they require to be present in angle-brackets, so that
� is an instance of the formah��� ��i and� is an instance
of the formah��� ��i. These formae are clearly compatible,
because any tour containing the fragment 2–1–4 is in their
intersection�

h��� ��i � h��� ��i � h��� ��� ��� ��i�

However, any recombination operator which respected the
formae would be bound to include the common edge��� ��
in all offspring from these parents, thus precluding gen-
erating a child inh��� ��� ��� ��i. Since proper assortment

� Curiously, the intersection operation for these edge formae looks like the set
unionoperation. This is becauseh��� ��i is really an abbreviation for the set of
chromosomes containing the 1–3 edge.
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requires that this child be capable of being generated this
shows that these formae are not separable.

When Whitleyet al introduced their powerful and attrac-
tive edge recombinationoperator they argued that ‘there
is no need for any new notion of “schema”, with its own
special schema theorem’ because edge recombination ma-
nipulates an ‘underlying binary representation’ in the usual
way. They went on to assert that ‘where the parents have the
same [edge], the offspring will have the same edge’. From
the description in the paper, however, given tours contain-
ing the fragments shown above, it appears that while edge
recombinationwouldalways generate a legal tour, there is
no constraint whichrequiresit always to transmit the com-
mon edge to the child. The operator does, however, provide
a high rate of transmission of edges, this having been the
major design criterion.

We can, of course, define the R� operator for the edge
formae, even thoughthey are not separable: it works simply
by copying common edges into the child and then putting
in random edges in such a way as to complete a legal tour.
The lack of separability simply ensures that R� does not
properly assort the formae.

10 Locality Formae

All of the formae discussed thus far have been fairly sim-
ilar to traditional schemata. We now introducelocality
formae,(Radcliffe [10]) which are rather different in char-
acter. Locality formae relate chromosomes on the basis
of their closeness to each other. Suppose our function is
defined over a real interval�a� b�. We then define formae
which divide the interval up into strips of arbitrary width.
Thus, a forma is a half-open interval��� �� with � and�
both lying in the range��� b � a�. These formae are sep-
arable. Respect requires that all children are instances of
any formae which contain both parents� and�. Clearly the
similarity set of� and� (the smallest interval which con-
tains them both) is��� ��, where we have assumed, without
loss of generality, that� � �. Thus respect requires that all
their children lie in��� ��. Similarly, if � is in some interval
� � ��� �� and� lies in some other interval� � � ���� ���,
then for these formae to be compatible the intersection of
the intervals that define them must be non-empty (� 	 ��;
figure 5) and so picking a random element from the simi-
larity set��� �� allows an element to be picked which lies in
the intersection, showing that R� fulfils the requirements of
proper assortment (figure 6).

Then-dimensional R� operator picks a random point in the
n-dimensional hypercuboid with corners at the two chro-
mosomes� and� (figure 7). This operator has been tested
on De Jong’s functions [2] which are not all obviously suit-
able for locality formae, and performed surprisingly well,

a � � �� � � �� b

� 
 �

Figure 5: Given����� �� and������ ���, with � 	 �, the
formae are compatible only if� 	 ��. The arrow shows
the similarity set� 
 �.

p

a � � b

p

a � � b

Figure 6: The left-hand graph shows (schematically) the
probability of selecting each point along the axis under R�

(“top hat”). The right-hand graph shows the corresponding
diagram for standard crossover with real genes.

x

y

z

�

�

Figure 7: Then-dimensional R� operator for real genes
picks any point in the hypercuboid with corners at the chro-
mosomes being recombined,� and�.

apparently out-performing standard binary representations
on four of the five functions. Full results are given in [9]
and [10].

Both this operator and its natural analogue fork-ary string
representations, which for each locus picks a random value
in the range defined by the alleles from the two parents,
suffer from a bias away from the ends of the interval. It is
therefore necessary to introduce a mutation operator which
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offsets this bias in order to satisfy the ergodicity condition
expressed in principle 6. An appropriate mutation operator
acts with very low probability to introduce the extremal
values at an arbitrary locus along the chromosome. In the
one dimensional case this amounts to occasionally replacing
the value of one of the chromosomes with ana or ab. The
combination of R� and suchend-pointmutation appears to
provide a surprisingly powerful set of genetic operators for
some problems.

Locality formae are not, of course, the only alternatives
to schemata which can be applied to real-valued problems,
and there is no suggestion here that locality formae should
be seen as a generic or definitive alternative to schemata. It
would be interesting, for example, to attempt to construct
formae and representations on the basis of fourier analysis,
or some other complete orthonormal set of functions over
the space being searched.

11 Future Directions

The random, respectful recombination operator discussed
above has been introduced as one which automatically re-
spects and properly assorts separable formae. In some cir-
cumstances R� is useful in its own right, but its principal
utility seems likely to lie in providing a starting point from
which to construct more sophisticated operators. The most
obvious way to do this is to modify the flat probability
distribution over the similarity set of the parents which R�

uses. Such modification could either exclude some chil-
dren entirely or simply bias the search towards some subset
of the similarity set on the basis of other information or
intuitions about the structure of the search space.

The problems which motivated the ideas in this paper are
ones for which the author was unable to find traditional
schemata which characterised the search spaces in useful
ways—graph optimisation, neural networks and the travel-
ling sales-rep problem among others. Little emphasis has
been placed on gene transmission in this paper, even though
this appears at first a very natural constraint to place on re-
combination operators. This lack of emphasis derives from
a lack of clarity as to the meaning of the term “gene” in the
context of problems such as those listed. The construction
of a complete orthogonal basis for a set of formae provides
a mechanism for defining genes rigorously, after which nor-
mal schema theory may be applied. There are, however,
sets of formae for which no orthogonal basis exists. It is in
areas such as these that the ideas in this paper are most likely
be useful, through the development of equivalence relations
(and their associated formae) which well characterise the
regularities in the search space. This may be helpful even
when these formae do not admit the construction of a com-
plete orthogonal basis, and so do not allow a subsequent
return to schema analysis.

12 Conclusion

Formae have been shown to be useful generalisations of
schemata which help the exploitation of intrinsic paral-
lelism in non string-based problems and extend the scope
of the “fundamental” (schema) theorem. The random, re-
spectful recombination operator (R�) has been introduced
as an operator which is sometimes useful in its own right
and might often be a useful starting point for developing
more sophisticated operators for a range of problems.

Acknowledgements

I would like to thank Mike Norman for many useful discus-
sions about genetic algorithms, and also Andrew J. S. Wil-
son and Mike for careful criticism of a draft of this paper.

Some of this work was supported by the Edinburgh Par-
allel Computing Centre, a multidisciplinary project which
receives major grants from the Department of Trade and
Industry, the Computer Board and the Science and Engi-
neering Research Council. The author acknowledges sup-
port from the University of Edinburgh and from Industrial
Affiliates.

References

[1] J. David Schaffer (ed),Proceedings of the Third
International Conference on Genetic Algorithms,
Morgan Kaufmann (San Mateo) 1989.

[2] Kenneth A. De Jong,A Genetic-Based Global
Function Optimization Technique,Technical
Report 80-2, University of Pittsburgh, 1980.

[3] Larry J. Eshelman, Richard A. Caruna, & J. David
Schaffer,Biases in the Crossover Landscape,in [1].

[4] D. E. Goldberg,Genetic Algorithms in Search,
Optimization & Machine Learning,Addison-Wesley
(Reading, Mass) 1989.

[5] D. E. Goldberg, & Robert Lingle Jr,Alleles, Loci and
the Travelling Salesman Problem,in Proceedings of
an International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates (Hillsdale) 1985.

[6] John Grefenstette, Rajeev Gopal, Brian Rosmaita, &
Dirk Van Gucht,Genetic Algorithms for the
Travelling Salesman Problem,in Proceedings of an
International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates (Hillsdale) 1985.

[7] J. H. Holland,Adaptation in Natural and Artificial
Systems,University of Michigan Press (Ann Arbor)
1975.

[8] I. M. Oliver, D. J. Smith & J. R. C. Holland,A Study
of Permutation Crossover Operators in the Traveling

8



Salesman Problem,in Proceedings of the Second
International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates (Hillsdale, NJ) 1987.

[9] N. J. Radcliffe,Genetic Neural Networks on MIMD
Machines,Ph.D. Thesis, Edinburgh University 1990.

[10] N. J. Radcliffe,Equivalence Class Analysis of
Genetic Algorithms,to appear inComplex Systems.

[11] Gilbert Syswerda,Uniform Crossover in Genetic
Algorithms,in [1].

[12] Darrell Whitley, Timothy Starkweather & D’Ann
Fuquay,Sheduling Problems and Traveling
Salesmen: The Genetic Edge Recombination
Operatorin [1].

9


