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Abstract 2 Analysisof Genetic Algorithms
Intrinsic parallelism is shown to have application In his seminal book on adaptation, John Holland [7] con-
beyond schemata ammschemata. More general sidered chromosomes which werary” strings or similar
objects calledormaeare introduced and general and showed that genetic algorithms can usefully be anal-
operators which manipulate these are introduced  Ysed in terms of their effects on higher-order structures,
and discussed. These includendom, respectful variously known asschemata, hyperplanesr similarity
recombinationThe extended formalism is applied templates. A schema specifies some set of alleles which

to various common representations and standard  the genes of a chromosome must express in order for that
operators are analysed in the light of the formalism. ~ chromosome to be said to be arstanceof the schema.
Holland derived a simple but immensely significant ex-
pression which bounded the expected number of instances
1 Introduction of any schema in the next generation of the population,
commonly known as the “schema” or “fundamental” theo-
: . . . rem. Later, David Goldberg [5, 4] introduced a number of
The conventional understanding of genetic algorithms at-|asses of 6-schemata” which played much the saroker”

tributes much of their power to intrinsic pgrallel!sm, the for problems in which the chromosome was a member of
phenomenon whereby each chromosome is an instance EH‘

h t h ¢ dit d ¢ e permutation grou@,, (such as the travelling sales-rep
many schemata (w-schemata) and its measured perfor- roblem, TSP) as did Holland's original schematakfeary

mance contributes to an estimated fitness for each of the“{?ring representations. The following analysis shows that

f(:lhemata:l Iaforts tfo maxw:llls'e the L?Vte ! fz;lntdrlns.m Ft)aral'schemata and-schemata can both be regarded as exam-
clism avaliable are requently in Contlict With a desire toUsey, o of 3 more general kind of object which we shall term a
natural representations and operators for the structures

space being searched. This paper demonstrates that intrin-

sic parallelism is a very general phenomenon, not restricte@for present purposes it will be convenient to identify a
to schemata and-schemata and explores the interactionforma (currently a schema or asschema) with the set of
between intrinsic parallelism, genetic representations andll of its instances, so that if a chromosomis an instance
operators. of a forma¢ we shall writene¢. In this spirit,3241 €304

. . . . . where[d is the “don’t care” symbol.
The paper begins (sections 2 & 3) with a review of earlier y

work which showed that more general partitions of theRecall that the Fundamental Theorem bounds the expected
search space than schemata give rise to intrinsic parallelismmumber of instanced/s (¢ + 1) of each form& in the pop-

This motivates a shift of emphasis from schemata to moreilation®3(¢ + 1) by
general kinds of regularities which may be present in the )
search space (sections 4 & 6), and allows the introduction <N§ (t+ 1)> > Ne (t)“f_(t) [1 _ Z pwpf)] ’

of general-purpose operators—including so-caiaiom, A1)

respectfu! recombmat!onwhmh can be O.f bqth analytic whereji¢ (t) is the sample average for utility 6fover all its
and practical use (section 5). The generalisation ofaschema . . ¢
. ) " . Instances in the populatidf(¢) and the termg,, p;, in the

is called &orma,and in sections 7 to 10 four different types sum quantify the disruptive effect of each operatpdrawn

of formaé are discussed, in conjunction with operators for d f up f P bershi
their effective manipulation. Before concluding, there is afrom a set2 of genetic operators, on forma membership.
discussion of the future directions suggested by this work.Recall also that theefining positionsf a forma are those
loci at which a value is specified, so that the fortha-
Oaldb, has defining positions at its second and fourth loci.

weN

1 Although Holland chose the neuter form for the Latin noun schema, there is no
option but to choose the feminine form of its synonym, forma. basek, for arbitraryk



further exploration of the space. The critical tasks are thus

% finding formae which characterise solutions in meaningful
ways and developing operators which usefully manipulate
these formae.

It is important to notice that the primary factor governing
the expected rate of increase of (instances of) any fagrma
is notthe mean relative fitness of its membets; zi(¢), but

the observedrelative fithesgi, (¢)/a(t) of its instances in
the populatiofi3(t). For this reason, our effective exploita-
tion of information about the fitness of various formae is
fstrictly limited by the reliability of the sample fitnegs (¢)

as an estimator of the mean fitnggsof all instances of

&. This suggests the unsurprising conclusion that we will
only be able to exploit effectively information about formae
whose instances display a low variance for fitness. More
succinctly, only those formae which well-characterise so-

The generalisation sought in this paper requires us to intro=" . . e . .
9 g pap d 9&9|ons, identifying sets with broadly similar performance,

Figure 1: An equivalence relation partitions the space o
chromosomes(, into a number of equivalence classes or
formag &1,&2, ..., &n.

ivalence relations over the search space. Givena :
duce equivalence relations P Il be of any value to the search. Thus the degree of in-

forma¢, consider the equivalence relationwhich relatesany . . . ) . .
pair of chromosomes having the same alleles at the forma’g'ns'c parallelism which can be effectively utilised by the

defining positions. We can choose to regard the forma agearclzh ,:S "m't;d to t?e number ]?f f?rtr_nae whlcr:hcapture
an equivalence class induced by this equivalence relatiod S9W1artes in the periormance of sofutions over the space

Specifically, we can denote the equivalence relation whiclg of chromosomes.

induces«[1b by CIMLIM, which we understand to relate  These considerations and others (including Goldberg’s prin-
those chromosomes which have the same values at thos#les ofminimal alphabetandmeaningful building blocks,
loci marked with thell symbol, placingl234 and2224 in [4]) led to the proposal of sidesign principle$or construct-

the formad204 but 1111 and0101 in the formadJ101.  ing useful representations, formae and genetic operators
We shall see examples of formae which are less like familia(Radcliffe [10]). In the following, the number of formae
schemata in section 10. induced by an equivalence relation will be referred to as the

Having made this identification, the Fundamental Theo_precisionof both the relation and the formae it inducks.
rem can be seen to apply &my s:ubsetf of the space of The set of equivalence relations which induce the formae

chromosomes(, provided only that the disruption coeffi- (equivalence classes) ungjer consideratiop wiII.be.wrinIten
cientp€ correctly bounds the disruptive effect of applying and the set of all formae induced by relationslirwill be

the operator to a chromosome which is a member of denoted:.

&. In practice we shall choose to regard these subsets asvo formaeé, ¢’ = will be said to becompatibleif it is
equivalence classes induced by some set of equivalengsssible for a chromosome to be an instance of §athd
relations—a freedom we always have. For this reason wg’ (figure 2). In the familiar case of schemat&]1 and
shall henceforth use the term “forma” to refer to an equiva-)010 are incompatible, because there is a conflict at the
lence class of any equivalence relation over the sgagke  first locus, wherea$[11] and110 are compatible.
chromosomes. Holland’s schemata and Goldberg’s variou
o-schemata are then immediately seen to be special cas
of formae. (See figure 1.)

ﬁggeneral, recombination operators take two chromosomes
and produce different children depending on explicit or
implicit control parameters such as the crosspoint used for
one-point crossover and the binary mask used in uniform
3 Exploiting Intrinsic Parallelism crossover. (See Syswerda [11] and Eshelmiaal [3] for
details of uniform crossover.) A generic recombination

Holland observed that each evaluation of a chromosom@PeratorX” will be taken to have an associated control set

can be regarded as a statistical sampling event which yielgd x nd functional form
information about the sample averages for utilitgathof X :CxCxAx —C.

the2" schemata of which itis an instance (the phenomenonl_he member of this control set chosen for some particular

referred o as intrinsic parallelism) but of course this 3P" e combination completely determines which of the various
plies equally to any formae we may choose to consider.

The parallelism is exploited by using information gathered® in the case of schemata and genes witalleles, the precision i ©, whereo is
about these higher order structures, the formae, to guide thethe order ofaschema.




The remaining three principles concern the way in which
operators manipulate chromosomes and formae. It is help-
fulto use an informal analogy in which chromosomes spec-
& C ify people and some of the characteristics used to define a
set of formae are hair colour and eye colour. The conse-
guence of each design principle for these formae is given at

O & the end of each principle.
&2 4. (RespectCrossing two instances of any forma should

produce another instance of that forma.
Formally, it should be the case that

Figure 2: The formaé; and¢, areincompatiblebecause VEeEVn, (eE VaeAx © X(n,(, a)€g,
they have null intersection, wheregsand¢s are compat-
ible because a single chromosome can be an instance where X is the crossover operator. In this case the cross-
them both. over operator will be said teespectthe equivalence rela-
tions (and their formae). This is necessary in order that the
algorithm can converge on good formae, and implies, for
example, thatX(n, n,a) = 5, assuming that equivalence
relations of maximum precision specify chromosomes com-
4 Design Principles pletely.

[If both parents have blue eyes then all their children pro-

The first three design principles are general and suggest déluced by recombination must have blue eyes.]

sirable characteristics of chromosomal representations angl (Proper assortmen@iven instances of two compatible

formae: formae, it should be possible to cross them to produce a
1. (Minimal redundancyYhe representation should have child which is an instance of both formae.

minimal redundancy; such redundancy as exists should b&ormally,

capable of being expressed in terms of the equivalence re-

lations inW. VE,EEE(ENE £ @) Vet Ve

Ideally, each member of the space being searched should be JacAx : X(n, 7, a)e€ne’. (1)
represented by only one chromosomeinThis is highly

desirable in order to minimise the size of the search spaceppis rejates to Goldberg's “meaningful building blocks”, of
If redundant solutions are related by one of the equivalencgnich he writes ([4], p. 373)

relations used then the genetic algorithm should effectively
be able to “fold out” the redundancy (see principle 4); other-
wise itis doomed to treat redundant solutions as unrelated.

possible children results from the cross.

‘Effective processing by genetic algorithms oc-

curs when building blocks—relatively short,

2. (Correlation within formae$ome of the equivalence re- low order schemata with above average fitness
lations, including some of low precision, must relate chro- values—combine to form optima or near-optima.’
mosomes with correlated performance.

This ensures that useful information can be gathered abow crossover operator which obeys equation 1 seems very
the performance of a forma by sampling its instances. Suchuch more likely to be able to recombine “building blocks”
information is used to guide the search. The emphasis igsefully, and any crossover operator which obeys this prin-
placed on low-precision formae because these will geneiple will be saidproperly to assorformae.

erally be less likely to be disrupted by the application of [If one parent has blue eyes and the other has brown hair it
genetic operators, and are also more likely to be compatiblenust be possible to recombine them to produce a child with
with one another. blue eyes and brown hair as the result of the cross.]

3. (Closure)The intersection of any pair of compatible 6. (Ergodicity)It should be possible, through a finite se-
formae should itself be a forma. guence of applications of the genetic operators, to access
This ensures that solutions can be specified with differentany pointin the search spacegiven any populatiof3(¢).
degrees of accuracy and allows the search gradually to behis provides theaison d'étrefor the mutation operator.
refined. Clearly the precision of formae so constructed will[Even if the whole population has blue eyes, it must be pos-
be at least as high as that of the higher-precision of thesible to produce a brown-eyed child. The mutation operator
intersecting formae. usually ensures this.]



5 Random, Respectful Recombination

Given a set= of formae, an obvious question is whether

it is possible to construct a recombination operator which
simultaneously respects and properly assorts the formae,
and if so, whether there is more than one such operator.
It is simple to show that not all sets of formae can be so
respected and properly assorted; a set which cannot be is
described in section 9. Those which can be are said to be
separableand a recombination operator which respects and
properly assorts a set of formae is saicéparatehem.

igure 3: Any pair of chromosomesand({ have asimi-
fority setdenoted; & ¢, which is the smallest forma from
= containing them both. Respect requires that any children
h produced by recombining two solutions lie in their similar-
ity set. The R operator makes a uniform random choice of
child from the parents’ similarity set. If the set of formae,
nd(= ﬂ {¢e= | n,CEE} . =, is separable (i.e. capable of simultaneous respect and

. . _ proper assortment) ther’Rvill separate them.
In the familiar case of schemata, this is the schema having

the alleles whichy and¢ share at its (only) definition points.

The principle of respect amounts loosely to the requiremen
that characteristics shared by both parents are passed on
their children. Itis useful to define tlsmilarity sety & ¢ of
chromosomeg and( as the highest precision forma whic
contains them both:

For example, randomly from one of the parents?® Rafter copying all the
1011100 1 shared alleles to the child, fills in the rest of the chromosome
@10010010 with genes randomly selected from the allele sets.
roorgodn In constructing theyclecrossover operator for permutation

Respect then amounts to the requirement that all childref€Presentations ar@schemata, the principal aim of Oliver
produced by recombining and ¢ be members of their et al[8] was to ensure that every allele in the child was taken

similarity set: from one or other of t_he' pare'nts.. More rgcently, Whigey
al [12] have used a similar criterion appliedadgesather
Vn,(eCVaeAx : X(n,¢,a)end (. than vertices of the graph to construct a highly-successful

Clearly if = is separable (that is, capable of simultaneous®dge recombinationperator for the TSP. It would be nat-
respect and proper assortment) the children required foral, therefore, to attempt to formulate a seventh design
proper assortment must also lie in the similarity set of thePrinciple which spemﬁes that all alleles presentin the child
parents. It follows that a recombination operator which, &€ to be transmitted from one or other of its parents.

given any pair of parentg and¢, returns a randomly- The difficulty with this for general representations and for-
selected member of ¢, is guaranteed both to respect and mae s that the notion of an allele is not necessarily well-
properly assort the formae. The recombination operatoiefined (e.glocality formaejntroduced in section 10). We
which makes auniform random choice of children from can, however, make some progress by introducing the no-
the similarity set of the parents is callethdom, respectful  tion of acomplete orthogonal basfer a set of equivalence
recombinationwhich we abbreviate to R(figure 3). relations¥. In the case of schemata aneschemata the

For example, when crossing the binary chromosohié$ basisE we shall seek to construct consists of all the rela-
and 0011, each of the four members of the similarity set tions with a single definition point. In the case of four-gene
0101 (0010, 0011, 1010, and1011) is chosen with prob-  Schemata, this gives

ability one quarter by R F={m000, Om0d, OOmd, OO0}

We can then define the intersection of compatible relations

6 Gene Transmission in the obvious way (figure 4) so that

It is instructive to notice that in the case of schemata for mO0---dnOmd---O=mEmEgd. - -
binary string representations the’ Rperator reduces to
uniform crossover (Radcliffe [9]); see Syswerda [11] and
Eshelmaral [3] for details of uniform crossover) but that
this is not so fork-ary representations with > 2. For 7. (Strict Transmissior(iven a complete orthogonal basis
while uniform crossover requires each allele to be selected” C ¥ for a set of equivalence relatiodsover the search

This then allows us to propose the seventh design principle
as follows:



(binary properly  strictly
schemata) respect assort transmit

1-point
2-point
1-pt shuffle
2-pt shuffle
uniform/R®

Table 1: Operators for binary schemata

(k-ary properly  strictly

Figure 4: The set of formae induced by the equivalence schemata) respect  assort  transmit

relationsy, " andy N «’. The formae induced by N v

are intersections of those induced#$yands)’. 1-point . °
2-point . .
1-pt shuffle . . .
space, under each equivalence relation inthe basisvery 2-pt shuffle o o o
child produced by recombination must be equivalentto one uniform N R R
of its parents. R3 . .

A recombination operator which obeys this principle will
be said to bestrictly transmitting.In the familiar case, this

is precisely the requirement that every allele in the child
come from one parent or the other.

[If one parent has blue eyes and the other has brown eyes,
the child must have blue or brown eyes.]

Table 2: Operators fok-ary schemata

induced by every other basic relatigne E:

! !
Formalising the notion of a basis is quite hard, and the Vo, E€E (Y #4)
hurried reader can safely skip the rest of this section if VEeW|VF' e : FNF' £ ¢,

uninterested in the formalism. . .
where[¢] is the set of equivalence classes (formae)

We begin by defining intersection for two equivalence rela- induced by.
tions. For these purposes an equivalence relatigmbest
described by a binary function The transmission principle described above is now well-
defined for a general set of formae provided that the equiv-
$:CxC—{0,1} alence relations inducing these formae have a complete

which returns 1 if its arguments are equivalent and 0 if they®rthogonal basis associated with them. We can define a
are not: geneas a basic equivalence relation and an allele as one of

1, ifn~¢, the equivalence classes (basic formae) induced by such a
YO =10 otherwise. basic equivalence relation, motivating the tegeme trans-
mission.

We can then define the intersection of two equivalence re-
lationsy, ¥’ € ¥ by

N C) = {(1) it 6(,¢) = '(1,¢) = 1,

otherwise.

7 Schemata

It is illuminating to classify the standard genetic operators
Given this, a subse’ C ¥ will be said to be a complete used for recombining-ary chromosomes and schemata.
orthogonal basis fo¥ provided that Tables 1 & 2 show which of the operators respect, properly
assort, and strictly transmit schemata for binary araty
e (Completeness) All relationg€ W can be constructed chromosomes respectively.

as as intersection of the basic relations: .
Notice that every standard crossover operator respects

VyeU IE, C E: ﬂ Ey =1, schemata and is strict in gene transmission, but that tra-
ditional 1- and 2—point crossover do not properly assort
o (Orthogonality) Every forma" induced by every ba- schemata. Plainly, just as’Ror binary chromosomes is
sic relationt € E is compatible with every forma identical to uniform crossover, if one modifies it by enforc-



ing strict gene transmission then uniform crossover is recov-
ered for highek-ary chromosomes also. These points are
noteworthy principally because of the contrasting situation

properly  strictly
o-schemata respect assort  transmit

for (admittedly more complex) permutation representations PMX
ando-schemata described in the next section. cycle . .
It should also be pointed out that while proper assort- orQer
. e ; uniform
ment and strict transmission have been defined as prop- R3 . .

erties which recombination operators either possess (with
respect to a given set of formae) or do not, in reality there
are degrees of assortment and transmission. We might, for
example, say that traditional crossover (with any number

f cross-poin ki rtschemata on the basis that . .
of cross-pointsyveakly assortsche fgrm crossover relates to traditional 1- and 2-point cross-

given a finite number of crosses between the parents an The elements from on rent are conied wherever
their various intermediate children it is possible to generate?hvert'). (The ele k?h ? ot ° tehpa entr | par ?neter has a 1
a child having any admixture of the parents’ genes. Sim- € binary mask that acts as the control para '

ilarly, operators which do not enforce strict transmissionanOl the remaining elgments are used to fill the gaps in the
of genes from parents to children will nevertheless pass Olgrder thatthey occur in the other parent.)

genes with some finite probability, giving rise to the notion The R operator in this case acts simply by inserting the
of partial transmission. common genes straight into the child chromosome and then
arranging the remaining elements of the permutation at ran-
dom in the gaps.

Table 3: Operators far-schemata

8 O-schemata

In their paper on the travelling sales-rep problem, Gold-9 Edge Formae

berg & Lingle [5] introduced both the partially-mapped

crossover (PMX) operator for permutations and the origi—lt seems clear, as Whitlest al [12] have argued, that the

edges rather than the vertices of the graph are central to the

nalo-schemata. Subsequently Oliwatral [8] introduced a . .
- : TSP. While there might be some argument as to whether or
fo-sch I 4 - )
variation ofo-schemata and Goldberg [4] introduced sev ot the edges should be taken to be directed, the symme-

eral others. For present purposes we shall consider only th& . i ) ! .

original o-schemF;ta whie:h gre most similar to schemgta'try of the euclidean metric used in the evaluation function

similar analysis is possible for the other types. suggests that undirected edges suffice.

Goldberg'so-schemata are induced by equivalence rela—lfthetownS (vertices) mgn-mty TSPare numbergd 1tg :

tions which relate chromosomes having the same elemen d the edges are described as non-ordered pairs of vertices
a, b), then apparently suitabéglge formaare simply sets

of the permutation in particular positions on the chromo- t od biect to th dition that rtex ;
some. This seems like a useful and appropriate relatiof’ ¢9€s. Subject 1o the condilion that no veriex appears

when the absolute positions of the objects labelled by thd" the description of more than two edges. pnfortupately,
permutation matter. In job-shop scheduling, for example,these formae are not sepgrgble. To see this, consider two
the numbers typically represent jobs and the positions orfeurs” ‘_"‘r,‘dc' with 7 con'talnlng the fragment 2-1-3 and
the chromosome specify on which machines and in whictf_containing 4-1-3. Plainly thgzse have the common edge
order the jobs should be placed. In these cases the al()l’ 3) [= (3, 1] We shall describe t.heformae by listing the
solute positions seem relevant and one might reasonabl?Olges they require to be present in angle-brackets, so that

expect operators which reliably respect, assort and transmit Is an instance of the formi(1, 2)) and( is an mstan(?e
o-schemata to be of great use. As Whitityal [12] have of the forma({(1, 4)). These formae are clearly compatible,

argued, however, it is not apparent that absolute city posipecause any tour containing the fragment 2-1-4 is in their

tion is of any great significance in the TSP; thisis discussedntersectiOﬁ
further in the next section. ((1,2)y 0 {(1,4)) = {(1,2),(1,4)).

Table 3 shows the way in whict-schemata are manipu- However, any recombination operator which respected the
lated by four standard crossover operators for permutation®rmae would be bound to include the common egige)

and the R operator. The operators are Goldberg’s PMX in all offspring from these parents, thus precluding gen-
crossover [5], Olivert al's cycle crossover [8], Davis's erating a child in{(1,2), (1, 4)). Since proper assortment
order CI’OS.SOVEY Op,erator’ mOdIerd. as described m_[8]’ and Curiously, the intersection operation for these edge formae looks like the set
what Davis callsuniform (permutation) crossovewhich unionoperation. This is becaugél, 3)} is really an abbreviation for the set of
relates to order crossover in exactly the same way as uni- chromosomes containing the 1-3 edge.




requires that this child be capable of being generated this
shows that these formae are not separable. (T TR
| |

| ]
When Whitleyet al introduced their powerful and attrac- a / 3 ¢ g b

tive edge recombinatiolmperator they argued that ‘there “ 7740[—»
is no need for any new notion of “schema”, with its own nad(

special schema theorem’ because edge recombination ma-
nipulates an ‘underlying binary representation’ in the usual,;igure 5: Givenjela, 8) andCela’, ), with ¢ > 7, the
way. They wentonto assert that‘where the parents have thg) 1 20 are compatible only if > o’. The arrow shows
same [edge], the offspring will have the same edge’. Fromy,, similarity set) @ .

the description in the paper, however, given tours contain-
ing the fragments shown above, it appears that while edge
recombinatiorwouldalways generate a legal tour, there is
no constraint whichequiresit always to transmit the com-
mon edge to the child. The operator does, however, provide
a high rate of transmission of edges, this having been the
major design criterion.

We can, of course, define the’ Rperator for the edge
formae, even thoughthey are notseparable: it works simply
by copying common edges into the child and then puttingFigure 6: The left-hand graph shows (schematically) the
in random edges in such a way as to complete a legal touRrobability of selecting each point along the axis undér R

The lack of separability simply ensures that Boes not  (‘top hat”). The right-hand graph shows the corresponding
properly assort the formae. diagram for standard crossover with real genes.

10 Locality Formae i

All of the formae discussed thus far have been fairly sim-
ilar to traditional schemata. We now introdutality
formae,(Radcliffe [10]) which are rather different in char-
acter. Locality formae relate chromosomes on the basis ;
of their closeness to each other. Suppose our function is
defined over a real intervgd, b). We then define formae
which divide the interval up into strips of arbitrary width. -
Thus, a forma is a half-open intenval, 7) with « and 2 y
both lying in the rangg0, b — a]. These formae are sep- U
arable. Respect requires that all children are instances of
any formae which contain both parentand(. Clearly the
similarity set ofn and( (the smallest interval which con- x
tains them both) i§y, (], where we have assumed, without

loss of generality, that > n. Thus respect requires that all

their children lie in[», ¢]. Similarly, if n is in some interval  Figure 7: Then-dimensional R operator for real genes

¢ = [o, 8) and¢ lies in some other intervdl' = [/, '),  picks any pointin the hypercuboid with corners at the chro-
then for these formae to be compatible the intersection ofmosomes being recombinegand(.

the intervals that define them must be non-empty-(«a’;

figure 5) and so picking a random element from the simi-

larity set[n, (] allows an element to be picked which lies in apparently out-performing standard binary representations
the intersection, showing that’Rulfils the requirements of  on four of the five functions. Full results are given in [9]
proper assortment (figure 6). and [10].

Then-dimensional R operator picks a random pointin the Both this operator and its natural analogue/eary string
n-dimensional hypercuboid with corners at the two chro-representations, which for each locus picks a random value
mosomes) and( (figure 7). This operator has been testedin the range defined by the alleles from the two parents,
on De Jong’s functions [2] which are not all obviously suit- suffer from a bias away from the ends of the interval. Itis
able for locality formae, and performed surprisingly well, therefore necessary to introduce a mutation operator which



offsets this bias in order to satisfy the ergodicity condition 12 Conclusion

expressed in principle 6. An appropriate mutation operator

acts with very low probability to introduce the extremal Formae have been shown to be useful generalisations of
values at an arbitrary locus along the chromosome. In thechemata which help the exploitation of intrinsic paral-
one dimensional case this amounts to occasionally replacinglism in non string-based problems and extend the scope
the value of one of the chromosomes withaar ab. The  of the “fundamental” (schema) theorem. The random, re-
combination of R and suctend-pointmutation appears to  spectful recombination operator {Rhas been introduced
provide a surprisingly powerful set of genetic operators foras an operator which is sometimes useful in its own right
some problems. and might often be a useful starting point for developing

Locality formae are not, of course, the only alternatives™°"® sophisticated operators for a range of problems.

to schemata which can be applied to real-valued problems,
and there is no suggestion here that locality formae should\cknowledgements
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