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Abstract

Representation is widely recognised as a key determinant of performance in evolutionary
computation. The development of families of representation-independentoperators allows
the formulation of formal representation-independent evolutionary algorithms. These
formal algorithms can be instantiated for particular search problems by selecting a suitable
representation. The performance of different representations, in the context of any given
formal representation-independent algorithm, can then be measured. Simple analyses
suggest that fitness variance of formae (generalised schemata) for the chosen representation
might act as a performance predictor for evolutionary algorithms. This hypothesis is tested
and supported through studies of four different representations for the travelling sales-rep
problem (TSP) in the context of both formal representation-independentgenetic algorithms
and corresponding memetic algorithms.

1 Motivation

The subject of this paper is representation in the context of evolutionary search. In particular, it
explores questions such as what it might mean to talk about the quality of a representation, what the
interaction between operators and representations might be, how one set of operators might be said to
be better in some problem domain than some other set of (possibly “standard”) operators, and—most
importantly—what are the characteristics of representations that make evolutionary search easier or
harder. The particular problem domain on which the paper will focus will be the travelling sales-rep
problem (TSP), and results will be presented for preliminary empirical studies of this problem. This
should not, however, distract from the primary goal, which will be to understand more about the
nature of representations in evolutionary search.



This work grows out of previous work oforma analysis (Radcliffe, 1992, 1994), which is a
generalisation of schema analysis (Holland, 1975). Forma analysis as developed thus far allows the
generation of a (formal) “genetic” representation through the characterisation of a problem class.
Significant effort has been devoted to understanding the kinds of representations that can result
from arbitrary characterisation of general problem classes (though the discussions have tended to
be couched in terms of “search spaces” rather than “problem classes”) and a family of generic
recombination operators has been developed. Each of the recombination operators in this family can
be applied to any search problem given only a (sufficiently rich) characterisation of the problem class.
This paper, together with Radcliffe & Surry (1994), extends this family of recombination operators
and augments it with representation-independent forms of mutation and hill-climbing algorithms.

The result of having created representation-independent forms for all the classes of operators in
common use in evolutionary computing is that formal, representation-independent algorithms can
be defined. This permits variation of representation as an independent variable in the context of a
fixed formal algorithm, allowing the influence of representation to be isolated and measured. This
is achieved by comparing the performance of algorithms that are identical in all respects other
than the representation chosen—ones that execute the same reproductive plan, with the same set of
operators and the same parameters. This paper addresses the exploitation of evolutionary algorithms
for search and optimisation, and is thus, in the terminology favoured by DeJong (1992), concerned
with GAFQO’s (Genetic Algorithms for Function Optimisation) or perhaps ECFO’s (Evolutionary
Computing For Optimisation). In particular, it is formal genetic and memetic algorithms that will be
considered, memetic algorithms being genetic algorithms that include local optimisers as operators
(Moscato & Norman, 1992; Radcliffe & Surry, 1994).

There is considerable freedom in choosing exactly how to measure the performance of evolutionary
algorithms. For example, it would be possible to choose to consider rate of convergence, time to
solution, or robustness of results, off-line or “best seen” performance, number of evaluations or
wall-clock time in almost any combination. Moreover, robustness is an issue not only with respect
to differently seeded stochastic runs, but also as a function of different problem instances, perhaps
of quite different complexities, and it may be that different relative performances will be achieved
by different representations as the parameters of the algorithm, the operators used and the particular
problem instance are varied. Despite this panoply of choices, it seems reasonable to expect that
for at least some classes of problem there will be a broad congruence of results over these different
measures. For other problem classes it might be possible to rank the performance of different
representations with respect to a particular performance measure and some chosen set of parameters
and operators.

The principal aim of this paper is to find and measure properties of representations that are well-
correlated with their performance in evolutionary search. If this could be achieved it would both
allow some level of performance prediction and increase understanding of the search techniques
themselves. A key motivation for the development of forma analysis was a set of observations about
the schema theorem (Holland, 1975) in its generalised form (Radcliffe, 1991; Vose & Liepins, 1991).
These suggest that representations based on formae (generalised schemata) with lower fitness vari-
ance would be expected—other things being equal—to allow more effective search than those based
on formae with higher fitness variance. Fitness variance of formae thus forms a natural candidate
for a measure to act as a predictor of representation performance. This paper goes on to explore
whether or not this proposition is supported through studies of the TSP.

Hofmann (1993) began to test fitness variance of formae as a performance predictor by studying
the travelling sales-rep Problem (TSP). He compared instantiations of random assorting recom-



bination (RAR; Radcliffe, 1994) using various representations, andtthtegic edge crossover,

SEX, developed by Moscato & Norman (1992) as an extension of edge recombination (Whitley
et al., 1989). The present work develops these tests significantly further by considering fully
representation-independent genetic and memetic algorithms with a range of representations.

2 A Review of Forma Analysis

Forma analysis provides methods for constructing representations of problems and for defining
operators with respect to those representations. Radcliffe (1994) provides a detailed and precise
formulation of forma analysis, while Radcliffe (1992) gives a more descriptive overview. The
present section summarises only those parts necessary for the immediate goals of formulating and
analysing representation-independent evolutionary algorithms.

2.1 Problem Class and Search Space

Let 7 be a class of search problems. In the present pApeitl be the set of all travelling sales-rep
problems. More specifically, I€F be the set of all problem instances in the class, where a problem
instance takes the form of the search sp&gep which it gives rise. Given a particular collection

of cities, the search spackis the set of all possible paths that visit every city exactly once—the set
of all possible tours—and the aim is to find the shortest with respect to some metric. More precisely
still, since there is no interest in tRe equivalent paths throughcities that arise from the freedom

to choose the starting city and the direction of travels the set of alhon-equivalent tours. For
example, given a set of four particular cities labelled 1 to 4, chosen for illustration to sit at the corners
of a square,
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A convenient way to represent a tour is by listing the sequence of city labels in the order in which
they are visited, so that the first tour shown in the set might be represenid4yThis is called
the permutation representation, denotedp.

It is important to be able to distinguish between the representative of a solution under some rep-
resentation (the formal chromosome, or genotype) and the solution itself (the phenotype). For a
particular representation, the set of all chromosomes in this representation will be dendted
Given a chromosom& € C”, and the solutior € S to which it corresponds, the notatiaf” will

be used to mean “the solution representedibin representatiop”. Thus X” is a member ofS,

and in the current exampl€” = z. It is thus accurate to write

S = {12347,1243",1324"} . @)

In general, a TSP over cities has an associated search space ofigizz = (n — 1)!/2, arising

from then! different permutations of the city labels and theequivalent forms for any tour. In this
paper, tours shown in the permutation representation will be shown starting with city 1, followed by
the lower-numbered of city 1's two neighbours.

2.2 Representation

It is necessary to be rather precise about representations in this study. For present purposes, a
distinction will be made betweegenetic representations analelic representations. A genetic



representation includes a collection gdgnes, each of which has a well-defined value for every
chromosome i€”. As usual, the values that genes take will be ter@iédes, and will formally

be labelled with the gene to which they correspond. It is a requirement of a (formal) genetic
representation that given all the gene values it be possible to identify the unique solution to which
they collectively correspond (if they do correspond to some solution). If all combinations of alleles
correspond to solutions ifi the genes (and the representation) are said wriwegonal. It is not

a requirement that representations be orthogonal, and indeed all of the representations that will be
used in this paper are non-orthogonal. The permutation representation of the TSP used in equation 2
gualifies as a formal genetic representation under this definition. Fercity TSP, is has genes,

(91,92 - - -, 9n), theith of which describes the city that is visitéth in the tour. Notice that not all
combinations of alleles correspond to solutions—for exanipiz3 does not—so the representation

is non-orthogonal.

In anallelic representation, genes awet required. Instead, a set of properties is defined, each of
which a solution may or may not have, and a solution is represented by the set of properties it has.
For example, in theindirected edge representation of the TSP, denoted, a solution is represented

by the set of the edges that it contains. Thus, the 18847 contains the (undirected) edgkx 23,

34 and14, so

12347 = {12,23,34, 14} “. ©)

Each of the chosen properties will be referred to aslésie and it is a requirement of an allelic
representation that every collection of alleles corresponds to a unique solution (if it does correspond
to some solution). This use of the term allele is non-standard, and arguably an abuse, but is natural
and convenient for the purposes of this paper.

Having introduced both (formal) genetic representations and (formal) allelic representations the
notion of achromosome (or genotype, or genome) can be made precise. In the case of genetic
representations this is more-or-less the familiar object, though formally will consist simply of the
set of alleles characterising a solution, usually together with an ordering of the genes. Thus, using
a tuple(a, b) to specify that thesth city visited is the city with labeb, the formal chromosome
corresponding t@243” is {(1, 1), (2,2), (3,4), (4,3)}. Inthe case of an allelic representation, again

the chromosome corresponding to a solution is simply the set of alleles that the solution contains.

It should be mentioned briefly that when (formal) genetic and allelic representations are discussed
in this paper there is no intended implication that the actual coding used to store individuals in
a computer need take the form described. The formal representation or representations that an
evolutionary computation uses are defined by the actions of operators on individuals rather than any
details of implementation.

2.3 Formae

A formais a generalisation of the familiar concept cdchema. A forma can be viewed for present
purposes as any collection of solutions in which the corresponding chromosomes share particular
alleles. Formae are typically given names such,asd specified throughdescription set denoted

(&€). The description set is simply the set of alleles that a chromosome must have in order for the
solution it represents to be a member of the forma in question, and is thus closely related to the
set of defining positions (and defining values) familiar from schema analysis. Since the formal
chromosome used here is precisely the set of alleles, it is clear that

(={X"eS|X D)} (4)



For example, working in the permutation representation for a 4-city TSP, the forma containing all
tours that have city 2 in their second position would be given by

€ = {12347, 1243} (5)

and described by
(€ ={2,2)}, (6)
This is probably more familiar to most readers asdreehemd 1201 (Goldberg & Lingle, 1985).

Similarly, in the undirected edge representation the fogmeonsisting of those tours that contain
thel2 edge is

¢ = {12347,1243°} = {{12,23, 34, 14}" {12,24,34,13}"}, @)

which is conveniently described by

(€)= {12}. 8)
2.4 Recombination, Respect, Transmission and Assortment

Evolutionary computing has givenrise to a large and growing collection of recombination operators.
When the representations used are orthogonal, certain properties tend to be common to almost all
such operators, and seem barely worthy of comment. When non-orthogonal representations are used,
however, these properties are much less universal and become more salient. The three properties
of respect, transmission and assortment are of particular relevance and are defined below. These
are normally discussed with respect to formae, but are here discussed with reference instead to a
representation.

A recombination operator is said tespect a representation if and only if every child it produces
contains all the alleles common to its two parents.

A recombination operator is said tansmit genes with respect to a given (formagjenetic repres-
entation if and only if each allele in every child it produces is present in at least one of that child’'s
parents. It is easy to see that a recombination operator that tramametss respectful.

A recombination operator is said taansmit alleles with respect to a given (formadjlielic repres-
entation if and only if each allele in every child it produces is present in at least one of its parents.
It is not necessarily the case that an operator that transatigles for an allelic representation is
respectful.

The distinction between gene transmission and allele transmission is important. For example, the
Edge Recombination Operator in its original form (Whitletyal., 1989) sought to transmit as
many undirected edges from the two parents as possible, and was thus striving to achieve allele
transmission, which it did typically with over 99% success. The operator was then modified to
achieve strict respect by placing all edges common to the parents in the child at the start (&hitley
al., 1991), resulting in a quite different (and apparently more successful) operator.

A recombination operator is said to bssorting (with respect to a given representation) if and only

if it is possible for it to produce any solution that contains only alleles present in the two parents. It
is not necessary for it to be possible to achieve this in a single recombination: repeated incestuous
recombination may be required. In the latter case, the operator is saidvieakky, rather than
properly, assorting.

The most familiar crossover operators from genetic algorithms (sudhpaint crossover, reduced-
surrogate crossover (Booker, 1987), parameterised uniform crossover (Spears & DeJong, 1991),



shuffle crossover (Schaffet al., 1989) etc. are respectful, transmitting and assorting with respect

to familiar string representations, which are typically orthogonal. However, for non-orthogonal
representations assortment is often incompatible with respect and gene transmission. Many operators
for non-orthogonal representations fail to have some or any of these properties.

3 Representation-independent Recombination

Three representation-independent recombination operators have previously been introduced, under
the names ofandom respectful recombination (R?), randomtransmitting recombination (RTR) and

random assorting recombination (RAR). As the names suggest® B always respectful, RTR is
always transmitting and RAR is always assorting, in each case with respect to the representation for
which they are instantiated. For orthogonal representations, RAR and RTR are equivalent and thus
assort, transmit and respect, and are in fact equivalent to uniform crossover. In the special case of
binary representations, RTR reduces fo R

For all the representations of the TSP considered here, RAR is the most relevant operator of the
family. It is described in detail in Radcliffe (1994), and may be thought of as a generalisation
of uniform crossover. A newer representation-independent form of recombinati@enésalised

N-point Crossover (GNX), which is now described.

3.1 Generalised N-point Crossover

In constructing a generalised form &f-point crossover, it is convenient to consider only ge-
netic representations. The difficulty in applying conventional crossover operators is that not all
combinations of gene values are legal. let= {¢1,¢s,...,¢n} be a set of cross points, with

0 </t </ly<---< Iy < n. This breaks a parent (genetic) chromosaénto the N + 1
segments

(X17X27 N 7Xf1—1)7 (XfUXfl-‘rla N 7Xf2—1)7 ERE (XfNaXfN-‘rl: .. 7Xn)7 (9)
and breaks the second parent chromosdménto corresponding segments.

The first phase of GNX's operation uses the same genetic material as orflifaoint crossover,

i.e., alternate segments from the two parents. It proceeds by picking a random order to Wsit the
segments (irrespective of the parents to which these segments are assigned). Within each segment,
the alleles are “tested” in a random order. An allele is “tested” by seeing whether it can be placed
in the child—i.e. whether it is compatible with those alleles that have already been accepted. If
compatible, the new allele is inserted, otherwise it is discarded. Because in general after this process
has terminated the child will still be incomplete, a second phase then commences in which the genetic
material discarded by ordinary-point crossover (the ‘complementary’ alternating sections) is used

to try to fill in any gaps. The segments are again visited in a random order and the alleles within
them are tested in random sequence. If the child is still not fully specified after this, it is completed
at random from amongst the legal combinations of alleles, or by some other patching method. In
this study, patching is always random. The general pattern of progress of GNX is shown in figure 1.

An example using the TSP may help to clarify this. Consider the permutation representation for the

TSP and @X with cross points} and6 with parents given by
X (1,2,3]4,5,67,8),
Y (1,5,413,8,7]2,6),

(10)
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Figure 1. GNX first copies gene values from alternating segments (circled) of the parent chromo-
somes, visiting the segments and testing the genes within these segments in a random order. Gene
values are copied to the child only if they are compatible with those already present. In this example,
gene®-8, 10, 12 and13 are assigned in this way, resulting in proto-child 0. For genes not set by this
process, alleles from the unused segments (boxed) of the parents are then tested for inclusion, again
in random sequence. In the example, gehasd14 are assigned thus, to give proto-child 1. Genes

still not fixed after this process are assigned either at random from the set of legal combinations, or
by some heuristic or other patching procedure. In this example, demeH 1 fall into this category.

where the underlined alleles are the ones that would normally be chosahrpdmint crossover.
Suppose the order in which the segments are testé?l $51). Then the second segment &f
will be inserted whole, giving the proto-chi{dd, O, O, 4, 5, 6, O, O). Alleles in the third segment
from Y will then be tested in a random order. Whichever order is chosen in this cafewthée
accepted and th&rejected, giving the proto-childd, O, O, 4, 5, 6, 2, O0)). The first segment df’
is then tested, and only tHewill be accepted, giving the final proto-childy, at the end of the first
phase as

Zy = (1,0,0,4,5,6,2,0). (11)

The untested segments are then visited in random order, Only the first and third segments from
are relevant here, and whatever the order of testing? ired thes will be accepted, and thzand
the 7 will be rejected, giving the proto-child at the end of the second phase

Zy =(1,0,3,4,5,6,2,8). (12)
Since this child is still incomplete, it must be patched. In this case however, only one legal
chromosome has the required allele pattern, so the final child is given by

Z=(1,7,3,4,5,6,2,8). (13)

4 Representation-independent Mutation and Hill-climbing

No effort has previously been devoted—to the best of the authors’ knowledge—to defining
representation-independent mutation and hill-climbing operators. Since mutation is widely re-
cognised as playing a vitable in evolutionary search it is clearly essential to the aim of this paper



to include such an operator; given a move operator in the form of mutation, the construction of a
hill-climber is a simple matter. The present section attempts to set the discussion of representation-
independent mutation operators in a reasonably general context before specialising to construct one
pertinent to the particular problem class—the TSP—considered.

A number of considerations affect the formulation of a generalised mutation operator, including
the characteristics of mutation operators in normal use, the perceived function of mutation and the
behaviour desired of a generalised mutation operator in special limits (such as the case of orthogonal
representations). The different strands of evolutionary computing use rather different sorts of
mutation operators. One nearly universal characteristic, however, is that they ensure ergodicity, i.e.
that the entire search space remains accessible from any population, and indeed from any individual.
In most cases mutation operators can actually move from any point in the search space to any other
point directly, but the probability of making “large” moves is very much smaller than that of making
“small” moves (at least with small mutation rates). For example, in evolution strategies mutation is
typically Gaussian on a parameter-by-parameter basis, while in genetic algorithms with orthogonal
representations a probability of (uniformly) choosing a new value for each gene is most commonly
used, giving rise to a binomial distribution for the number of mutations made. Itis a characteristic of
most mutation schemes that relatively unlikely “large” moves can be effected by a series of smaller
moves, thus making large, potentially fruitful moves possible with reasonable probability through
iteration provided that the intermediate points (solutions) are themselves viable in the context of the
reproductive plan used.

In order to clarify notions of “large” and “small” mutations, a metric (distance measure) will

be introduced over the representation spdée In the case of genetic representations, this is
straightforward. A distinction is first made betweeardinal andordinal genes. The alleles for
ordinal genes are naturally ordered, as, for example, when the gene represents a continuous or
contiguous variable, and in this case it makes sense to define a variable distance between alleles
(normally the Euclidean distance). With cardinal genes, such as those found in all the genetic
representations of the TSP considered, there is no particular relationship between the various alleles
for a given gene, so the discrete metric is used, making the distance between any pair of distinct
alleles one. The distance between solutions is then computed simply by summing the distances
between the gene values at each locus. For cardinal genes, this measure reduces to the familiar
Hamming distance.

Allelic representations are a little more complex to handle. Itis implicitin the definition of genes that
every chromosome has the same number of alleles, because every gene has precisely one well-defined
value for each solution (and there is no other source of alleles). In the case of allelic representations
this need not be the case. For example, if the search space consists of sets of variable size, it
would sometimes seem appropriate to take the (variable number of) elements of the set as alleles. A
satisfactory approach for allelic representations is to define an overlap or similarity measure in the
first instance by counting the number of alleles that are common to the two solutions in question. A
distance is then formed by subtraction, possibly after normalisation, from a suitable number, being
careful to ensure that a solution’s distance from itself is zero. In the particular case of the TSP, the
only allelic representation used in this paper (the undirected edge representation) has the property
that every solution has the same number of alleles, so this complication may be ignored.



4.1 Binomial Minimal Mutation

The specific form of mutation required for present purposes is a generalisation of the standard
gene-wise mutation operator from genetic algorithms since the TSP representations considered are
all essentially cardinal. Theinomial minimal mutation operator (BMM) can be defined for any
representation—genetic or allelic—provided that the following conditions are met.

1. Every solution has the same numberof alleles. The distance between two chromosomes
X andY will be taken to ben minus the number of alleles that they share and will be written
D(X,Y).

2. Itis computationally feasible to identifginimal mutations. Considering a pair of chromosomes
X andY, Y will be said to be a minimal mutation of provided that there is no solutidfi
(# X)forwhichD(X, Z) < D(X,Y). Although not absolutely required, BMM is formulated
primarily for the case in which the distance between a chromosome and each of its minimal
mutations is the same for all chromosomes, and every chromosome has the same number of
minimal mutations.

3. A sequence of minimal mutations from any point in the representation sffacan generate
any pointinC?, and thus any pointis.

Binomial minimal mutation takes a single parametgy, € [0, 1], which is a probability. If the
conditions listed above are met, BMM proceeds by first choosing a number of minimal mutations
to make by sampling the binomial distributid®(n, p,,), where, as before; is the number of

alleles in each chromosome. It then generates the mutated child by repeatedly choosing a randomly
(uniformly) selected minimal mutation until the requisite number have been performed.

There are a few points worth noting about this operator. First, in the limit of orthogonal genes,
standard mutation is recovered provided that no mutation in the sequence is accepted if it generates
a chromosome already visited in the sequence of minimal mutations. While this check is technically
desirable, it is relatively troublesome to implement in general. For small valugs, @nd for
representations in which the number of minimal mutations for each chromosome is large, the
check makes little practical difference, merely distorting the binomial distribution slightly, so in the
experiments for this paper, checks for previously visited mutations have not been performed.

Secondly, notice that there is no suggestion that the minimal mutations should have distance 1
from the solution to be mutated; indeed, while this will clearly be the case for orthogonal genetic
representations, it is the case for none of the four representations considered in this paper.

Finally, given chromosome&, Y and Z, it is not necessarily the case thatX,Y) < D(X, Z)
implies thatY” can be generated frofd in fewer minimal mutations than can.

4.2 Representation-independent Hill-climbing and Memetic Algorithms

Given a move operator, which in the present case will be taken to be the minimal mutation operator,
it is a simple matter to define a family of hill-climbing operators. A hill-climber can be obtained

by repeatedly trying moves generated by the move operator, in some sequence, and accepting all
those that improve upon the current solution. This process continues until none of the moves that
the operator can generate improves the solution. Numerous strategies are possible for generating
the moves, but in the authors’ experience the more random the order, the better will be the expected
performance. The method used here generates moves in a pre-determined order for any particular
hill-climbing, but this order changes each time the hill-climber is invoked. Davis (1991) has argued



that it is usually desirable to accept neutral moves (ones that have no effect on fitness), but this is
not central to the current discussion, and since neutral moves are unlikely in general TSP instances,
this has not been allowed.

The application of a local optimiser such as the hill-climber described always succeeds in generating
a local optimum (with respect to minimal mutations). Following Radcliffe & Surry (1994), which
also contains further details of the hill-climbing techniques usewyaetic algorithmis defined to be

a genetic algorithm in which local optimisation is applied to all solutions before evaluation. This can
be thought of as a genetic algorithm applied in the subspace of local optima, with local optimisation
acting as a repair mechanism for children lying outside this subspace (i.e. not being locally optimal).
Because the evaluation function for the TSP is decomposable—the length of a child tour similar to its
parent can be computed more easily given the length of the parent tour—hill-climbing is relatively
cheap, so memetic algorithms might be expected to perform relatively better than genetic algorithms
for this problem.

5 Formae and Performance Prediction

The primary aim in this work is to find measurable properties of representations that are correlated
with the performance of an evolutionary algorithm. The candidate indicator studied will be fitness
variance of the formae associated with the chosen representation. One motivation for this choice
derives from the Schema Theorem (Holland, 1975), which has been shown both by Vose (1991)
and Radcliffe (1991) to apply to general subsets of the representation space provided that disruption
coefficients are computed appropriately. This motivation has previously been described in detail,
so here the focus is instead on the interactions between formae, genetic operators and population
update mechanisms.

Consider first those formae whose members in the current population are fitter than average. Along
with the chromosomes that instantiate them, these formae are selected for reproduction more often,
or selected for deletion less often, than formae with lower observed performance. Consider now the
effects of applying genetic operators. If the recombination operator used respects the representation,
this will ensure that whenever two parents are recombined their child will instantiate all formae of
which they share membership. If the recombination operator is not very disruptive, even when only
a single parent is a member of such formae the probability of generating new instances of them is
relatively high. If the recombination operator is non-respectful, the extent to which these arguments
apply depends on the degree to which respect is violated. Similarly, for (typical) low mutation
rates, a child produced by mutation will share membership of most formae of low to medium order
with its parent. Finally, although hill-climbing from a random starting point will usually produce

a chromosome very different from its parent, when the parent is in the vicinity of a local optimum
(with respect to that hill-climbing operator) as will tend to be the case after recombination in an
effective memetic algorithm, it is likely that hill-climbing will not change a very large number of
alleles, so forma membership is still to some extent preserved.

Turning now to forma construction—i.e., the sampling of chromosomes in formae of which the
parents are not instances—observe that such newly sampled formae are likely to overlap in their
allele composition with formae currently seen to be performing well, particularly to the extent
that the recombination operator used is respectful. This is important because the way in which
evolutionary (and particularly genetic) search is thought to proceed is by sampling smaller (higher
order) formae that are intersections (compositions) of larger (lower order) formae of high relative
fithess. Thus recombination is thought of as gradually building up complex solutions by combining



“fit” components. While challenging search problems will exhibit some possibly large degree of
non-linearity, so that combining components that are observed to be (relatively) fit will not always
result in ever-fitter individuals, this approach retains some validity.

If the recombination operator used is transmitting, it can further be observed that alleles common
to chromosomes and formae exhibiting above average performance at the current time step are also
preferentially selected, both individually and collectively. The essence of the notion of assortment
is that assorting recombination operators are capable of bringing together any compatible (non-
competing) formae from the parents in a child. This seems to be essential given the model of
genetic (and more widely evolutionary) search considered, the wide-spread use of non-assorting
recombination operators for non-orthogonal representations notwithstanding. Needless to say, in
the presence of selective pressure towards better solutions and formae, the new formae of which
instances are created tend to be intersections of fitter, larger (lower order) formae.

Though somewhat imprecise, these arguments suggest that there are important senses in which
evolutionary algorithms are directed by observed forma fithesses, especially when recombination
plays a majordle, and when the recombination operators are (more strongly) respectful, transmitting
and assorting. The schema theorem also points to the impobtartiyserved forma fithesses play in
guiding the search. Given this, the distribution of fitnesses within formae would seem to be central
to how search proceeds. Itis therefore worth considering the distributions that might be expected or
desired.

First, it seems clear that for any challenging search problem large formae will have wide distributions
of fitnesses, while if the search is to be guided by forma fitnesses it would be helpful if smaller formae
had narrower distributions. Indeed, if formae were simply random collections of solutions from the
search space it would be impossible to collect any useful directional information from collecting
fitness samples from formae. Ultimately, of course, the interest is really in the fithess of the fittest
member of each sampled forma, but unfortunately that is unavailable without exhaustively searching
each forma. It is therefore probably necessary to restrict consideration to statistical measures
available from sampling formae. Of these, the variance is the most familiar measure of spread, and
it is this that will be considered.

These considerations suggest that the variance and other moments of formae from any representation
in which the genes carry useful fitness information would be a maximum for large formae and fall
towards zero for very small formae. More importantly, however, it might be further expected that
representations for which fithess variance tends to fall more quickly as a function of increasing forma
order would give evolutionary search algorithms stronger and more exploitable information than
those with broader fithess distributions. For this reason the experiments in this paper will measure
fithess variance and various other fithess moments for formae in four different representations for the
TSP in the hope that these moments will tend to be inversely correlated with the performance of the
algorithm. Related experiments have been conducted previously by Hofmann (1993), though he did
not use a fully representation-independent algorithm and was more concerned with the comparison
between RAR and a domain-specific operator, the Strategic Edge Crossover operator (SEX; Moscato
& Norman, 1992), which is a variant of the Edge Recombination operator (W/sitkay, 1989).

6 Representationsfor the TSP

Inthe empirical tests that follow, four representations of the TSP will be used. Two have already been
introduced—the permutation representajigsection 6.1), which gives rise to traditiomaschemata
and is a (formal) genetic representation, and the undirected edge representstiction 6.2), which



is allelic. Additionally, a directed edge (genetic) representafianill be used (section 6.3) as well

as a genetic variation of the undirected edge representation (section 6.4), that uses compound
genes and is equivalent to the corner representation suggested by Hofmann (1993). These four
representations are then characterised in sections 6.5-6.7.

6.1 The Permutation Representation

The permutation representation is a formal genetic representation, and has already been introduced
in section 2.2. Here thi&h gene identifies théh city in the tour. Thus

4 3

13247 = M (14)

1 2

The first gene is fixed to have alleleand is thus formally redundant but this will not prove
problematical. A complication does arise, however, from the freedom to choose the direction in
which a tour is traversed. While this degeneracy can be formally removed with the convention
introduced previously (always choosing the second city to have a lower numbered label than the
nth), this is not wholly satisfactory. This problem is discussed in section 6.6.

The RAR’ and GNX’ operators are easy to implement for this representation, while the definition
of BMM? depends on the observation that the minimal mutation of a permutation is generated by
exchanging the positions of two cities. An example of such an exchange would be

1435267 BMM” 1534967, (15)
by exchange of genes and4. Minimal mutations are at distan&from their parents in this
representation. (In terms of the number of edges broken, this corresponds to a four-change.) It
is easy to see that all permutations can be generated by a sequence of such city exchanges, so the
conditions for BMM are satisfied.

Gene transmission is incompatible with assortment in this representation, as the reader will be able
to verify by trying to construct a member of the forma described (8y3), (5,2)} from parents
1234567 and1345267 without violating transmission.

6.2 The Undirected Edge Representation

The undirected edge representation has also been introduced previously and is allelic. In this
representation a tour is represented by the set of undirected edges it contains. As an example of the
representation,

13247 = {13,23,24, 14}". (16)
RAR", while somewhat harder to construct than for the permutation representation, is straightfor-
ward, and the factor df that is problematical for the permutation representation does not arise since
the representation makes no reference to the direction in which a tour is traversed.

It is easy to see that the minimal mutation for this representation is the reversal of a sub-tour, which
is a 2-change in terms of the number of edges broken. For example,

(14,34, 35,25,26,16)" = 143526 MM " 1953467 = {12,34,35,25,46,16}%,  (17)

reversing the section from positior2sto 5 inclusive. (In general, solutions are written in the
permutation representation in this paper, even when they are being manipulated with respect to



other representations.) Minimal mutations are at dist&rfoem their parents in this representation.
Although this operator is often referred to imsersion, this term will be avoided here because of
possible confusion with the general re-linking operator (Holland, 1975).

To see that transmission is incompatible with assortment in this representation, observe that generat-
ing an instance of the forma described{i, 23} from parentd 234567 and1243567 is impossible
without violating transmission.

It is possible to apply GNX to the undirected edge representation by constructing an associated
pseudo-genetic representation. This is achieved by arranging the edges in the order and sense in
which they are encountered following the tour they describe in an arbitrarily chosen direction. The
resulting list of edges will have every city exactly once as the “first” end of an edge, and can thus
be used for alignment, allowing application of GNXWhile the chromosome resulting from this
process is the same as that used in the directed edge representation, the edge is still considered to
be undirected, so that when determining whether an edge can be added to a proto-child, its sense
may be reversed if necessary. Thus, GNdased on undirected edges is different from the the same
operator for directed edges.

6.3 TheDirected Edge Representation

The directed edge representation is a (formal) genetic representation and represents a tour by the set
of directed edges it contains. It is genetic because genes are well definéth, tberesponding to
the city visited after cityi. Thus, identifying this representation by the supersetipt

r Al S R SN
14237 = {14,23,31, 42}". (18)

As with the permutation representation, the degeneracy arising from the freedom to choose the
direction in which to traverse the tour may be formally removed by convention, but again this is not
wholly satisfactory. This is discussed in section 6.6.

The construction of RARand GNX! for this representation is again straightforward. The minimal
mutations for the directed edge representation are 3-changes, for example,

d
1435267 BMM 1493567, (19)
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which corresponds to cycling the eddel8, 52, 26} to become[42, 56, 23}. Minimal mutations are

at distance in this representation. The reader will quickly become convinced that such 3-changes
suffice to generate all tours, and thathanges ang@-changes are not possible in this representation.

- =
Attempting to construct an instance of the forma describe@23y31} from parentsl23456? and
126543% should convince the reader that transmission is incompatible with assortment here also.

6.4 The Corner Representation

The final representation is in some ways the most complex, and is again based on undirected edges,
but forms a (formal) genetic representation, denetdd this case, there is a gene corresponding to
each city, each of which takes compound alleles consisting of the unordered pair of edges centred
on that city. For example,

14237 — {(1, (3,4), (2.{3,4}), (3.41,2}), (4, {1, 2})}6 (20)



where a tupléa, {b, c}) indicates that city: has neighbours andc. Defining RAR and GNX is
straightforward.

The minimal mutation is sub-tour reversal (a 2-change), so the same example as for undirected edges
may be used, specifically
» BMM® »
1435267 "— 125346". (22)
Notice, however, thatin this case the new solution is at distafroen its parent in this representation.

The incompatibility of transmission and assortment may be verified for this representation by at-
tempting to generate an instance of the forma describef{by{3, 5}), (6, {3,7})} from parents
123456787 and12367458".

6.5 Linkage Considerations

The positioning of genes on a chromosome definelérikage. With crossover operators based on
transferring contiguous portions of the genome from parents to children, si¢tpaimt crossover,
linkage can significantly affect algorithmic performance. In the case of the permutation repres-
entation, where théth gene specifies théh city visited, the static linkage achieved by placing
theith gene at théth locus seems natural. With the other genetic representations—directed edges
and corners—and the pseudo-genetic representation based on undirected edges, it is less clear that
placing theith gene at théth locus is sensible. This is because in each of these case# tiene

is associated with thé&h-labelled city, rather than théth city in the tour, and the city labels are
(usually) arbitrary. A simple way to determine the linkage adaptively is to re-link the genome in one
of the two possible orders achieved by following the tour in a consistent direction. It seems at least
possible that GNX using this linkage will perform better than using the essentially random linkage
achieved by determining locus from city number. Both forms of linkage will therefore be tried with
GNX.

6.6 Redundancy and Degeneracy

In order to classify representations further, it is useful to introduce the distinct notions of redundancy
and degeneracy. These notions are often confused, a failing of which the authors, amongst others,
have previously been guilty.

Arepresentation is said to exhibédundancy if a solution can be uniquely determined from a subset

of its genes (or in the case of allelic representations, its alleles). All four representations considered
contain some redundancy, because the last allele value can always be determined from the others
(owing to the cyclic nature of the tour). The corner representation, however, contains vastly more
than the other representations, actually specifying each edge twice. Thus fully half of the genetic
material in the corner representation is formally redundant—specifying every other corner in the
tour would suffice. Notice, however, that figed set of corners (those centred on a particular half

of the cities) would be adequate, which is why the representation used specifies the corner for each
city. High redundancy necessarily gives rise to a high degree of non-orthogonality, but it is not clear
to what extent—if any—this inhibits the search.

In contrast, a representation is said to exhdageneracy if more than one chromosome is used

to represent the same solution, (i.e. if the genotype-phenotype mapping is non-injective). Both
the permutation representation and the directed edge representation exhibit degeneracy, while the
undirected edge representation and the corner representation do not. While folding out the factor of



n arising from the need to fix a starting city is easily handled, the degeneracy associated with the
direction of travel is more problematical.

There are a number of possible responses to degeneracy:

1. GaugeFixing. As has been stated earlier, the problem can be removed formally by a convention
such as that used in this paper—always choosing the direction so that the second city has a
lower numeric label than theth. The problem with this is that some very similar solutions
have almost maximally different representations. For examp&53? is a minimal mutation
of 126453%, but in standard form is represented186426”. This is a practical problem for
recombination, which will fail to recognise that the two solutions have anything in common
except the redundant first gene and equidistant fourth gene, and leads to a certain “brittleness”.

2. Ignorethe problem. It is possible simply to leave the evolutionary search to use two different
representatives for each solution. This avoids the brittleness of the “gauge fixing” approach, but
at the cost of searching a larger space with two optima, and (more importantly) failing to allow
recombination to recognise even when it is manipulating identical parent solutions. While there
is some evidence that evolutionary search is still reasonably effective in these circumstances, it
is hard to avoid the suspicion that its efficiency is reduced.

3. Align before Recombination. The practical difficulties of degeneracy manifest themselves
during recombination. An alternative approach involves computing the distance between the
first parent the second traversed in one sense, and then computing the distance with the second
parentreversed. Recombination is performed with second parentin the sense that minimises the
distance. This is similar in spirit to an approach used by Montana & Davis (1989) for removing
the well-known hidden node degeneracy in feed-forward neural networks before recombination.
This avoids the problem of brittleness and recombination’s consequent inability to recognise
certain very similar solutions, but is arguably somewhat arbitrary.

All of these options have drawbacks. For this study, the second option has been chosen as the
simplest.

6.7 Characteristicsof TSP Representations

Before proceeding to the experimental results, it will prove useful to summarise the key characteristics
of the four representations considered. These are presented in table 1.

7 Experiments and Results

Figure 2 shows the standard deviation of fithess within formae as a function of order for the four
different representations. Each point is based on 100 samples from each of 100 formae of the given
order, for the 100-city Krolak ‘C’ problem from TSPLIB (Reinelt, 1990). Graphs of higher fitness
moments are qualitatively rather similar, and are not shown.

TSP optimisation experiments were then conducted using both genetic and memetic algorithms,
using RAR and @X for recombination, as well as edge recombination for a domain-specific
comparison. For all representations except permutatio2X,v&s applied with both fixed linkage

and the “tour-following” scheme described in section 6.5. The order of application of operators
was recombination (with probability.0) of two parents chosen by probabilistic binary tournament
selection, followed by BMM (defined with respect to the chosen representation) with a rate chosen so



representation cardinality degeneracy mutation-order  linkage

rep. type redundancy (edges) (genes) variance
permutation genetic O(n) low  x2 4 2 good high
directed edge genetic O(n) low  x2 3 3 random medium
undirected edge  allelic — low none 2 2 none  medium
undirected edge pseudo O(n low  x2 2 2 random medium
corner genetic O(n?) high none 2 4 random low

Table 1: This table shows the main characteristics of the representations studied for the TSP.
Cardinality indicates the number of allele values per gene (where applicable). Degeneracy and
redundancy are discussed in section 6.6. Mutation order lists first the number of edges and second
the number of gene values changed by a minimal mutation. The linkage column describes the
appropriateness of the “natural” linkage for the representation, and variance gives the relative fitness
variance of formae, as shown in figure 2. Note that the undirected edge representation is shown
twice, once in its allelic form and once as the pseudo-genetic representation discussed in section 6.2.

that the mean number of mutations per chromosome was one. In the case of the memetic algorithms,
minimal-mutation-based hill-climbing was then performed to find a local optimum. A panmictic
population of size of 100 was used with a steady state update scheme. All performance results are
averages over 20 runs, and show the length of the best tour in the population relative to the optimum.
Each representation started from the same set of 20 randomly-generated populations. Error bars are
omitted since they are in all cases smaller than the tick sizes.

Both the 100-city Krolak ‘C’ and the 442-hole PCB drilling problem from TSPLIB were studied.
The genetic algorithm for the smaller problem used probabilistic binary tournamentg with.7

for selection and replacement, with elitism, and allowed duplicates. Results for these runs are shown
in figures 3, 4 and 5. A memetic algorithm (not shown) solves this problem to optimality extremely
quickly.

The larger problem used a more aggressive GENITOR-style plan adapted from Vetullet 989),

using tournament selection with probability 1.0, and replacement of the worst individual. Duplicate
solutions were forbidden. For edge recombination only, a zero mutation rate was used in line with
its creators’ recommendation (to achieve maximal edge transmission). Both genetic and memetic
algorithms were used for this problem, with genetic results shown in figures 6 and 7 and memetic
results in figure 8.

In general, the results show fithess variance of formae to be a powerful indicator of algorithmic
performance. The results expected on this basis would be that for any fixed algorithm, corners
should perform best, permutations worst, and the edge representations somewhere in between. The
only discrepancies that need to be explained are now addressed in turn.

First, in four of the five direct comparisons, undirected edges out-perform directed edges despite
similar forma variance. Factors explaining this might include the difference in mutation operators
(two-changes for undirected edges versus three-changes for directed edges) and the greater disrupt-
iveness of recombination for directed edges. The one case in which directed edges do better is a very
aggressive plan with RAR. Here, it is possible that mutation is performing a more important search



role, and greater recombinative disruption effectively increases the mutation rate advantageously.

Secondly, while permutations generally perform poorly, as forma variance would suggest, in one case
(GNX on the 100 city problem) they perform rather better than might be expected. This is probably
in part because GNX takes long contiguous chunks from parents, thus effectively transmitting many
edges even for permutations. As noted in figure 2, if the formae considered are restricted to be those
with contiguous defining positions, forma variance falls almost exactly to that for the edge-based
representations, largely explaining this anomaly.

The final discrepancy concerns the performance of the corner representation relative to that of
undirected edges. Here, the general pattern is that when good linkage is used and maintained,
performance is very similar, but when poorer linkage is used, or is severely disrupted (as with RAR),
corners significantly outperform edges. This is wholly understandable since corners intrinsically
carry much more linkage information, in the sense that every corner specifies an adjacency of two
edges. The only case in which this pattern breaks down is for the smaller problem where corners
and undirected edges perform similarly with RAR.

Other points evident from the results are that GNX consistently out-performs RAR, linkage effects
are (perhaps unsurprisingly) rather strong and the memetic algorithms produce dramatically better
results in absolute terms than do genetic algorithms on the problems considered. More surprisingly,
GNX with both the corner and undirected edge representations, even with non-optimised parameters,
appears at least competitive with, and arguably superior to, edge recombination.
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Figure 2: The graph shows the mean standard deviation of fitness for 100 samples drawn from
100 randomly generated formae at each order shown for the four representations considered. They
are based on the 100 city Krolak ‘C’ problem. Note that if the graphs were shown as functions
of forma size, rather than forma order, the corner line would be coincident with those for the
edge representations. Further, if the formae are restricted to have adjacent defining positions, the
permutation line becomes almost coincident with the edge lines. Confidence intervals (standard
errors) are omitted as they are smaller than the tick marks shown.
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Figure 3: The graph shows the results produced by representation-independent genetic algorithms
on the 100-city Krolak ‘C’ problem, instantiated with four representations using the RAR recom-
bination operator. For comparison, a curve for random search is shown, as is Veéhilég edge
recombination operator, modified by deferring patching of tour fragments until all parent edges are
exhausted.
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Figure 4: The graph shows the results produced by representation-independent genetic algorithms
on the 100-city Krolak ‘C’ problem, using the GNX-R recombination operator (c.f. figure 3). These
runs use the “natural” linkage associated with the representation. For the edge-based and corner
representations, this linkage is essentially random (the gene’s locus being determined by its city
label).
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Figure 5: The graph shows the results produced by representation-independent genetic algorithms
on the 100-city Krolak ‘C’ problem, using the GNX-F recombination operator (c.f. figures 3, 4).
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Figure 6: The graph shows results for a GENITOR-style genetic algorithm with RAR on the 442-hole
PCB drilling problem corresponding to those in figure 3.
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Figure 7: The graph shows results for a GENITOR-style genetic algorithm with GNX on the 442-
hole PCB drilling problem corresponding to those in figure 5. Results for the inferior random linkage
corresponding to figure 4 are omitted.
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Figure 8: The graph shows the same problem as is presented in figures 6 and 7, but now using a
memetic algorithm that applies full minimal-mutation-based optimisation before each evaluation.
Note the different scales used on the axes. Results for the permutation representation are omitted
owing to the extremely long generation times required. Furthermore, even on a per-generation
comparison, results are not competitive with those shown. Results are also omitted for directed edges,
again because of excessive compute times required. These arise because the minimal mutation for
this representation is a 3-change, which requires at 2@st more computation than the 2-changes
needed for undirected edges and corners.



8 Discussion and Conclusions

The general pattern of results supports the hypothesis that the fithess variance of forma exhibited by a
representation acts as a good predictor of its performance in formal genetic and memetic algorithms.
Indeed, given the large number of potentially relevant differences between the four representations
considered, the predictive power of forma variance is rather impressive. While results have only
been gathered for one problem class (the travelling sales-rep problem) and a limited range of
representation-independent algorithms, they provide a powerful case for corresponding studies in
other problem domains.

The best results overall were produced with the corner representation, which has a number of
unusual features. Principal among these is its extremely high cardinality and compound allele struc-
ture. The results therefore provide further evidence that the traditional advocacy of low cardinality
representations as universally appropriate is misguided.

The results obtained with GNX are at least competitive with, and arguably superior to, those obtained
with edge recombination. Since this is widely regarded as the best form of recombination for the TSP
when a genetic algorithm without local search is used, this is a significant finding. Moreover, since
GNX is applicable tany (formal) genetic representation (including non-orthogonal representations)

it may well prove effective in other problem domains. These studies have demonstrated that
the construction of formal representation-independent operators and algorithms is not merely of
theoretical import, but can provide competitive practical search tools.

Linkage has long been recognised as an important theoretical characteristic of chromosomes in the
context of recombination, but has rarely been shown to have a major effect on performance in practice.
These experiments have clearly demonstrated linkage effects, and shown that adaptive linkage
strategies—albeit not the traditional inversion-based approach—can yield superior performance.
The best results achieved were with corners, which contain intrinsic linkage information, and
undirected edges when linked by tour following.

Finally, these results strongly confirm the dramatically superior performance that can be achieved by
incorporating local search in genetic algorithms for TSP to yield memetic algorithms. The TSP is

a natural candidate for memetic search because the fithess function is decomposable, allowing very
cheap testing of minimal mutations, but it should be noted that even if full evaluation is performed
at each memetic step the overall performance of the memetic algorithms discussed is still superior.

References

Lashon Booker, 1987. Improving search in genetic algorithms. In Lawrence Davis, &iitetic
Algorithms and Simulated Annealing. Pitman (London).

Lawrence Davis, 1991. Bit-climbing, representational bias, and test suite desigrockedings of
the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

Kenneth A. De Jong, 1992. Genetic algorithms are NOT function optimizers. In Darrell Whitley,
editor,Foundations of Genetic Algorithms 2. Morgan Kaufmann (San Mateo, CA).

David E. Goldberg and Robert Lingle Jr, 1985. Alleles, loci and the traveling salesman problem. In
Proceedings of an Inter national Conference on Genetic Algorithms. Lawrence Erlbaum Associates
(Hillsdale).

Reimar Hofmann, 1993. Examinations on the algebra of genetic algorithms. Diploma Thesis,
Technical University of Munich, Department of Computer Science.



John H. Holland, 1975Adaptation in Natural and Artificial Systems. University of Michigan Press
(Ann Arbor).

David J. Montana and Lawrence Davis, 1989. Training feedforward neural networks using genetic
algorithms. InProceedingsof the Eleventh Inter national Joint Conferenceon Artificial Intelligence,
pages 762—-767.

Pablo Moscato and Michael G. Norman, 1992. A “memetic” approach for the travelling salesman
problem —implementation of a computational ecology for combinatorial optimisation on message-
passing systems. |Rroceedings of the International Conference on Parallel Computing and
Transputer Applications. IOS Press (Amsterdam).

Nicholas J. Radcliffe and Patrick D. Surry, 1994. Formal memetic algorithms. In Terence C. Fogarty,
editor, Evolutionary Computing: AlSB Workshop, pages 1-16. Springer-Verlag, Lecture Notes in
Computer Science 865.

Nicholas J. Radcliffe, 1991. Equivalence class analysis of genetic algoritG@oraplex Systems,
5(2):183-205.

Nicholas J. Radcliffe, 1992. Non-linear genetic representations. In&uner and B. Manderick,
editors Parallel Problem Solving from Nature 2, pages 259-268. Elsevier Science Publishers/North
Holland (Amsterdam).

Nicholas J. Radcliffe, 1994. The algebra of genetic algorithrAsnals of Maths and Artificial
Intelligence, 10:339-384.

Gerhard Reinelt, 1990. TSPLIB. Available by anonymous FTP from softlib.rice.edu.

J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das, 1989. A study of the
control parameters affecting online performance of genetic algorithms for function optimisation.
In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann
(San Mateo).

William M. Spears and Kenneth A. De Jong, 1991. On the virtues of parameterised uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 230-236.
Morgan Kaufmann (San Mateo).

Michael D. Vose and Gunar E. Liepins, 1991. Schema disruptiorPrdaeedings of the Fourth
International Conference on Genetic Algorithms, pages 237-243. Morgan Kaufmann (San Mateo).

Michael D. Vose, 1991. Generalizing the notion of schema in genetic algoritArigicial Intelli-
gence.

Darrell Whitley, Timothy Starkweather, and D’Ann Fuquay, 1989. Scheduling problems and traveling
salesmen: The genetic edge recombination operatoPrdoeedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo).

Darrell Whitley, Timothy Starkweather, and Danial Shaner, 1991. The traveling salesmen and
sequence sheduling: Quality solutions using genetic edge recombination. In Lawrence Davis,
editor,Handbook of Genetic Algorithms. Van Nostrand Reinhold (New York).



