
EPCC-TR94-11

Constrained Gas Network Pipe Sizing with Genetic
Algorithms

Ian D. Boyd Patrick D. Surry, Nicholas J. Radcliffe
boyd�bgers�co�uk fpds�njrg�epcc�ed�ac�uk

British Gas ERS Edinburgh Parallel Computing Centre
Research and Technology Division King’s Buildings

Newcastle-upon-Tyne University of Edinburgh
NE99 1LH, England EH9 3JZ, Scotland

Abstract

The application of a genetic algorithm to an industrial pipe-sizing problem is
presented. The optimum sizes for the pipes in a given network with specified
supply and demand requirements must be determined, subject to two additional
constraints. The problem was used as a test case for the evolutionary computing
language RPL2. The genetic approach is shown to produce better results than the
existing industrial heuristic at the expense of longer run times.

1 Problem Specification

It is a frequent criticism of genetic algorithms and evolutionary computation more
generally that published problems are usually contrived and unconstrained. (There are
of course notable exceptions, for instance the work of Goldberg (1989) on gas network
compressor optimisation.) This paper demonstrates how a relatively straightforward
implementation of a genetic algorithm can find significantly better solutions than the
standard heuristics actually used for a real, constrained pipe-sizing problem to offer
actual cost reductions of about 4%.

The design of a gas network—e.g. to supply a new housing development—involves
defining the layout of the network and, having done this, choosing the types of pipe to
be laid. The layout is generally determined by such considerations as the routes of roads
but the selection of the pipe types is tackled as a constrained optimisation problem. The
important constraints on any design are that:

� the pipes selected should allow the customer demands to be met at or above a
‘minimum design pressure’

� each pipe (other than those incident to a source) should have at least one upstream
pipe of the same or greater diameter.

Pipes are produced in a range of discrete diameters and in a number of materials, and
for a given material the cost per unit length of pipe is an increasing function of diameter.

1



The pressure drop along a pipe, for a fixed flow, is a decreasing function of diameter so
larger diameters will generally give a more secure network. The problem in designing
a network is therefore to select the diameters of pipes in such a way that they are large
enough to provide security of supply but not larger than they need to be. The latter
would amount to an over-design of the network, in that a cheaper design would have
been adequate.

Real problems often involve some pipes whose diameter is fixed, typically because they
have already been laid. Thus the pipe sizing of the network does not necessarily involve
selecting the diameters ofall of the pipes in the network.

In the particular problem being considered, the network contained 25 pipes, each of
which could be selected from six possible sizes, giving rise to a search space of size
��� � � � ����. The pipes connect 25 nodes, 23 of which are (varying) demand nodes
and two of which are pressure-defined source nodes (flow-defined source nodes may
also be specified). The network is a real one, which was actually built (with pipe-sizes
determined using the heuristic method discussed in section 4.1).

2 Genetic Representation and Operators

The representation used to represent the pipe sizes in the network is a variable car-
dinality integer string. A genome is a sequence ofN integersa�a� � � �aN with
ai � f�� �� � � � � Ci � �g, whereCi is the cardinality (number of alleles) of theith
gene. (The particular problem instance tackled happened to haveCi � � for each pipe
but this is not generally the case.)

This representation was built as a generic library forThe Reproductive Plan Language
2, RPL2 (Surry & Radcliffe, 1994). Several generic genetic operators were used to
manipulate the representation. The evaluation function used is described in section 2.2.

2.1 Genetic Operators

Create Genome A random genome is created by uniformly choosing values for each
gene from the allowable set of alleles.

Random Mutation The random mutation operator simply replaces each allele by a
random allowable value with probability equal to the mutation rater. It is possible that
an allele could be replaced by the same value. In our work we used random mutation
with rate 0.025, combined with creep mutation.

Creep Mutation operator replaces each alleleai with ai � � or ai � � with probability
�Ci � �� � r wherer is the mutation rate. Thus genes with high cardinalities are more
likely to be modified than those with low numbers of allowable alleles. This biases
the operator so that it takes the same number of trials (in expectation value) to mutate
from the lowest allowable value to the highest (� to Ci � �). A cyclic flag indicates
whether creeping directly fromCi�� to � (or vice versa) is allowed. For the pipe-sizing
problem, we used non-cyclic creep mutation with rate 0.05.

This operator is more appropriate (and effective) in the context of the pipe-sizing
problem since the alleles in this case correspond to an ordered list of pipe sizes, so that
consecutive integers represent “close” pipe sizes.

2



N -Point Crossover A standardN -point crossover operator was developed which pro-
duces a single child from two parents. The operator selectsN points in the string of
integers, and forms a child by alternately copying sections from one parent and then the
other, switching at each cross point. The operator is further parameterised to sometimes
simply clone one of the parents rather than crossing them. Initial experiments made use
of N point crossover with	 � N � 
 but it was found to be less effective than uniform
crossover.

Uniform Crossover The parameterised uniform crossover (Spears & DeJong, 1991;
Syswerda, 1989) was also used. The operator creates a single child from two parents,
by choosing each gene in the child from one of the parents, selected randomly according
to the bias parameter. The operator may also simply clone one of the parents, according
to a second parameter. We used a bias of 0.6, and never allowed cloning.

Although this operator is cited as weaker thanN -point crossover in preserving short
schemata, this is relevant only if there is greater than average correlation between
adjacent genes in the genome (strong linkage). In the case of the pipe-sizing problem,
it is difficult in general to to define an ordering in which this is necessarily the case,
making the uniform crossover operator appropriate for the problem. It is possible that
a labelling derived by minimising the bandwidth of the network’s connectivity matrix
would increase the effectiveness ofN -point crossover for the pipe-sizing problem, but
this has not yet been explored.

A further distinction betweenN -point and uniform crossover is the distribution of
genetic material in the child. Uniform crossover gives a binomial distribution of material
from the two parents, whileN -point crossover gives a uniform distribution (Eshelman
et al., 1989).

2.2 Evaluation Function

The evaluation function used determines the cost of a genome by summing the cost of
the pipes making up the network.

The two constraints must be considered, however. Both the upstream pipe constraint
and the minimum pressure constraint are implicit. Their satisfaction can only be de-
termined by solving the non-linear gas flow equations in the network. (This defines
the upstream direction and the pressure at each node in the network.) This means that
a penalty function is really the only viable approach for handling these constraints,
as it would be extremely difficult or impossible to construct genetic operators that re-
spected them. Ideas from Richardsonet al. (1989), Michalewicz & Janikow (1991)
and Michalewicz (1993) were used to increase the penalty gradually as a function of
generation number.

The form of the cost function used was

cost �
NpipX

j��

lj � c�Dj� � �n
k�

gen
� �pdes � pmin�

k� � �n
k�

gen
�
X

j

�Dj �Dk�
k� (1)

where the first term is the cost of the pipes as a function of diameter, the second term is
the minimum pressure constraint, and the final term is the upstream pipe constraint with
summation over pipesj where there is no upstream pipe which is of greater or equal
diameter andDk is the diameter of the largest upstream pipe from pipej.

3



Values were selected for constants� and� which normalised nominal values of the
penalties to the same scale as the basic cost of the network. The various exponents
were selected in order to make the penalties grow at roughly the same rate as networks
became “worse” at satisfying the constraints (values ofk

�
� ��
 andk

�
� ��� were

used). The annealing parametersk
�

andk
�

were subject to some experimentation, but
0.2 was found to be an effective value for both.

3 The Reproductive Plan

A fairly conventional reproductive plan was developed to tackle the pipe-sizing problem
using RPL2 (Surry, 1993). The actual plan which yields the best solution is presented
in section 5.

Elitism was used to preserve the best member of the population. Because the fitness of
a genome depends on penalty functions that vary with the current generation number,
the entire population must be reevaluated at each generation, prior to fitness-based
reproduction.

Various forms of structured population structures were investigated during the problem,
using the facilities provided by RPL2. A panmictic (unstructured) population was used
in most initial experiments, in order to tune values of parameters, particularly for the
fitness function. A fine-grained structure did not yield significant benefits, perhaps due
to the relative simplicity of the problem. An island structure was also used, with the
main benefit being the ability to run on multiple processors and try longer runs with
larger populations. However, this also did not significantly improve performance.

4 Results

4.1 Heuristic

The current heuristic technique used by British Gas was applied to the problem, in order
to compare its performance to the genetic approach. In fact the network was actually
installed using the results obtained from the heuristic.

The heuristic determines a good configuration of pipe sizes by first assuming a constant
pressure drop over the whole network and guessing some initial pipe sizes which will
yield a valid network (satisfying the constraints) but not necessarily optimal. The
heuristic proceeds by locally optimising this solution, repeatedly trying to reduce single
pipe diameters while maintaining a valid network. Eventually this process terminates
when no pipe size can be reduced while maintaining network validity.

The algorithm takes on the order of ten seconds on a 486 PC (25MHz) to reach its
“optimal” configuration for the problem under study. A schematic (which does not
represent differences in pipe lengths and source/demand requirements) of this solution
appears in the left part of figure 1.

4.2 Genetic Algorithm

The genetic technique produced consistently good results, although it did not always
converge to the same optimal solution. In most cases it found networks which were
better, often significantly, than that determined by the heuristic approach. In almost all

4



cases the algorithm found a valid network by the end of the run (i.e. one in which the
penalty terms were zero). Run times for typical populations of 100 networks through
100 generations were of the order of several minutes on a Sun SPARC 2 workstation.
The best result was a network which was approximately 4% cheaper than the heuristic
solution. A schematic of this network is shown in figure 1.

Heuristic (Cost 17743.8) Genetic Algorithm (Cost 17075.2)

Source

Demand

Pipe diameter

Figure 1:The genetic algorithm finds a solution approximately 4% better than that found by the
heuristic technique. The networks are shown only schematically, so that the pipes are actually
of different lengths. The demand and supply requirements are also different at each node. Both
networks are valid in that they satisfy both the upstream-pipe and minimumpressure constraints.
The genetic algorithm result is from a panmictic population of population size 100, running for
100 generations. A typical run time for the heuristic is a few seconds, as compared to a few
minutes for the genetic algorithm.

5 The RPL2 Plan Used to Solve the Problem
plan�PipeSize� � Plan that produces the ����� solution

use StdInst� IntVC�	data
dat	�� Debug�

string sFile�
bool bMaxIsBest�
int iCounter� nGenerations� i� nPopsize�
genome gNew�gChild�gParentA�gParentB� gBest�
gstack gsPop� gsCache�
real rExp�� rExp�� rExp
� rExp�� rMinPressPen� rUpstreamPen� rMutateRate�

BGInit�	network
dat	�� � Initialisation section
sFile �� 	stdout	� � Direct output to the terminal
nPopsize �� ���� � Population size
nGenerations �� ���� � Number of generations
bMaxIsBest �� FALSE� � Minimise the cost function
rExp� �� �
�� � exponent for n�gen in min press penalty term
rExp� �� �
�� � exponent for min press penalty value
rExp
 �� �
�� � exponent for n�gen in upstream penalty term
rExp� �� �
�� � exponent for upstream penalty value
rMinPressPen �� ��
�� � scale factor
rUpstreamPen �� �
�� � scale factor
rMutateRate �� �
��� � basic mutation rate
Randomize���������� � pseudo random initialisation

for iCounter �� � to nPopsize � generate initial population
gChild �� RandomGenome���
BGCostFunction�gChild� �� rExp�� rExp�� rExp
� rExp�� rMinPressPen� rUpstreamPen��
Push�gChild�gsPop��

endfor

for i �� � to nGenerations

5



Empty�gsCache�� � re�evaluate all solutions since penalty changes
for iCounter �� � to nPopsize

gChild �� Pop�gsPop��
BGCostFunction�gChild� i� rExp�� rExp�� rExp
� rExp�� rMinPressPen� rUpstreamPen��
Push�gChild� gsCache��

endfor
Swap�gsPop�gsCache��

gNew �� SelectRawBest�gsPop� bMaxIsBest�� � use elitism
for iCounter �� � to nPopsize � �

gParentA �� SelectRawTournament�gsPop� bMaxIsBest� �� �
�� TRUE��
gParentB �� SelectRawTournament�gsPop� bMaxIsBest� �� �
�� TRUE��
gChild �� CrossUniform�gParentA� gParentB� �
�� �
���
MutateRandom�gChild�rMutateRate � �
���
MutateCreep�gChild�rMutateRate�FALSE��
BGCostFunction�gChild� i� rExp�� rExp�� rExp
� rExp�� rMinPressPen� rUpstreamPen��
ReplaceRawTournament�gsPop� gChild� bMaxIsBest� �� �
�� TRUE� TRUE��

endfor
ReplaceRawWorst�gsPop� gNew� bMaxIsBest��

PrintInt�i��
gChild �� SelectRawBest�gsPop� bMaxIsBest��
BGCostFunction�gChild� i� rExp�� rExp�� rExp
� rExp�� �rMinPressPen� �rUpstreamPen��
PrintGenome�gChild�sFile��
StatsPrint�i���gsPop�sFile��

endfor
endplan

References

Davis, 1991. Lawrence Davis.Handbook of Genetic Algorithms. Van Nostrand Reinhold (New
York), 1991.

Eshelmanet al., 1989. Larry J. Eshelman, Richard A. Caruana, and J. David Schaffer. Biases
in the crossover landscape. InProceedings of the Third International Conference on Genetic
Algorithms. Morgan Kaufmann (San Mateo), 1989.

Goldberg, 1989. David E. Goldberg.Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley (Reading, Mass), 1989.

Michalewicz and Janikow, 1991. Zbigniew Michalewicz and Cezary Z. Janikow. Handling
constraints in genetic algorithms. InProceedings of the Fourth International Conference on
Genetic Algorithms. Morgan Kaufmann (San Mateo), 1991.

Michalewicz, 1993. Zbigniew Michalewicz.Genetic Algorithms + Data Structures = Evolution
Programs. Springer Verlag (Berlin), 1993.

Richardsonet al., 1989. John T. Richardson, Mark R. Palmer, Gunar Liepins, and Mike Hil-
liard. Some guidelines for genetic algorithms with penalty functions. InProceedings of the
Third International Conference on Genetic Algorithms, pages 191–195. Morgan Kaufmann
(San Mateo), 1989.

Spears and De Jong, 1991. William M. Spears and Kenneth A. De Jong. On the virtues of
parameterised uniform crossover. InProceedings of the Fourth International Conference on
Genetic Algorithms, pages 230–236. Morgan Kaufmann (San Mateo), 1991.

Surry and Radcliffe, 1994. Patrick D. Surry and Nicholas J. Radcliffe. Rpl2: A language and
parallel framework for evolutionary computing. Technical Report EPCC-TR94-10, Edinburgh
Parallel Computing Centre, 1994.

Surry, 1993. P. D. Surry. RPL2 user guide. Technical Report EPCC-BG-PAP-RPL2-UG,
Edinburgh Parallel Computing Centre, November 1993.

6



Syswerda, 1989. Gilbert Syswerda. Uniform crossover in genetic algorithms. InProceedings of
the Third International Conference on Genetic Algorithms. Morgan Kaufmann (San Mateo),
1989.

7


