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Abstract. An important factor in the successful application of evolutionary tech-
niques to real-world problems is the incorporation of domain knowledge. One form
such knowledge often takes is the possession of one or more high-quality solu-
tions. Non-random initialisation, or inoculation, of the population in an evolu-
tionary algorithm provides a way to incorporate such knowledge. A body of folk-
lore about the methods and results of such initialisation techniques exists, but is
largely unwritten and unquantified. This paper discusses the need for hybridisa-
tion, through whatever means, and concentrates on the potential offered by seed-
ing the initial population with extant good solutions. Such ideas also have impli-
cations for algorithmic restarts after convergence. Experiments conducted using a
number of real industrial and commercial problems confirm some of the accepted
folklore, and highlight several interesting new results. In particular, it is found that
both average solution quality and run-times improve when reasonable inoculation
strategies are used, but that the quality of the best solution found over a number
of runs often deteriorates as the initial populations become less random.

1 Introduction

Most techniques for evolutionary search are regarded as weak methods, in that they fail
to incorporate domain knowledge explicitly. However, it is recognised (albeit not so
widely as might be desirable) that success or failure may depend crucially on the qual-
ity of the information implicitly captured by the representation and operators which are
employed (e.g. Radcliffe, 1992). The importance of such prior knowledge of the tar-
get function is already widely accepted in the global optimisation community at large
(Zhigljavsky, 1991). Nevertheless, much of the research in evolutionary computation
takes a problem-independent view. In fact, some authors go so far as to speculate about
‘black-box’ optimisation (Goldberg, 1989; Kargupta, 1995), despite the fact that any
hopes for strong results here are provably fruitless (Radcliffe, 1992; Wolpert & Macready,
1995; Radcliffe & Surry, 1995). These authors, amongst others, have argued strongly
that useful results (i.e. which distinguish a given method from enumerative search) are
only possible when parameterised by characteristics of a problem domain of interest.
Ironically, as well as work on black-box optimisation, there have been numerous stud-
ies of individual probleminstances, but disappointingly few on well-specified problem
classes.

One way in which genetic search often can be strengthened within a given problem
domain is throughhybridisation with other search methods. Davis (1991) is a particular
advocate of this, as are many of the practitioners actively using evolutionary methods



in real-world applications. Due to their inherent generality and simplicity, evolutionary
algorithms provide an extremely convenientcontext in which to embed other techniques,
and numerous approaches have been considered.

The addition of specialised move operators incorporating heuristics or exploiting
domain knowledge in other ways is often effective (Michalewicz, 1992; Davis & Or-
vosh, 1993). If a true local-optimisation algorithm exists, these ideas can be extended
by applying full local optimisation to each child solution produced before evaluation,
yielding amemetic algorithm (Moscato & Norman, 1992; Radcliffe & Surry, 1994b).
Embedding a search technique in the genotype-phenotype mapping is another possibil-
ity (Belew et al., 1990; Valenzuela & Jones, 1994). In this case, the evolutionary algo-
rithm may be regarded as searching not directly over the space of solutions, but rather
over the space of inputs to the search method with which it is being hybridised.

Although such hybrid approaches allow evolutionary techniques to benefit from ex-
isting domain knowledge or heuristics in a dynamic way as the search progresses, addi-
tional information may be available in forms which do not readily fit within this frame-
work. In particular, it is often the case that one or more good candidate solutions are
known (i.e. solutions which are statistically unlikely to be found in reasonable times by
random search). These may be the result of applying a local optimisation algorithm (per-
haps one too expensive to embed in an evolutionary search), specialist knowledge or
experience (which may be difficult to capture algorithmically), current best-practice, or
may even be the result of a previous run. Alternatively, some knowledge of the fitness
function (such as partial separability) may be available. A reasonable question is thus:
in what way (if any) can knowledge be usefully exploited to find better solutions in an
evolutionary context?

In section 2 we review previous work on the problem of initialisation, highlighting
the different approaches taken and the further lines of attack that they suggest. In section
3 we use these ideas to explore the theoretical implications of the question posed above,
leading to discussion of several practical initialisation strategies. This is followed by an
examination of the issues of population diversity and convergence in section 4. Several
real industrial and commercial applications are used to test the proposed methods in sec-
tion 5 and the results are discussed in section 6, which also contains proposals for further
work.

2 Previous Approaches to Initialisation

Little emphasis is given in the evolutionary computation literature to the problem of
initialisation; the near-universal approach is to choose an initial population uniformly
at random from the search space (Holland, 1975; Goldberg, 1989). Particularly in real-
world problem domains where hybrid approaches are often adopted for the search itself,
it seems likely that more effective strategies must exist. It is in fact the authors’ expe-
rience that there is a widespread body of unwritten and unquantified folklore about hy-
bridisation via non-random initialisation. One often hears that non-random initialisation
“works” and “has been used successfully for application X” if care is taken to “avoid
premature convergence”. Specifics, however, are often difficult to pin down.



Grefenstette (1987) captures the main issues involved in non-random initialisation
when he states that:

� � � the initial population� � � might be chosen heuristically rather than randomly,
with the goal of introducing some helpful building blocks into the gene pool.
This should be done carefully since [a genetic algorithm] may quickly converge
to a local optimum if the initial population contains a few structures that are far
superior to the rest of the population.

He carried out empirical studies of the travelling sales-rep problem using three dif-
ferent initialisation strategies. In the first method he attempted to maximise allelic en-
tropy in the initial population (super-randomness, if you will), while in the other two
the initial population contained some fraction of tours generated by the commonly-used
nearest-neighbour heuristic and a simple variant thereof. He reported no significant ben-
efit to using heuristic initialisation.

Related work on the travelling sales-rep problem includes results from simulated an-
nealing, such as that of Sourlas (1986).He used conventional simulated annealing to find
the (small) set of edges which appeared regularly in tours at some fixed low temperature.
He was then able to search for optima much more efficiently using an annealing algo-
rithm which only considered moves involving theseacceptable edges. He also reported
empirical studies which indicated that only short edges appear with high probability in
this acceptable set (i.e. each city is very likely to be visited immediately before and after
one of its nearest neighbours). This suggests the possibility of initialising based on some
non-uniform probability distribution over the set of all edges (which can be viewed as
alleles in this problem; Radcliffe & Surry, 1994a). This could obviously be generalised
to any domain in which a useful prior distribution over alleles is available, perhaps even
developed from previous runs.

The phenomenon of premature convergence (usually taken to mean the situation in
which a population has become nearly homogeneous without including a global opti-
mum) is important in evolutionarysearch, and has been widely studied. Numerous meth-
ods for avoiding it, or for restarting search following its occurrence, have been proposed.
If one views a single good solution (from whatever source) as the focus of a “converged
population”, the relevance of such restart methods to the initialisation problem is appar-
ent. Most work in this area has considered only binary representations (sometimes en-
coding real-valued parameters) whereas in this paper we consider the non-binary repre-
sentations typically employed in real-world applications (Davis, 1991). This introduces
important technical differences in the character of mass-mutation.

Shaefer (1987) introducedmany novel ideas of relevance to initialisation in his ‘AR-
GOT’ strategy, which utilised a dynamically adapting representation.Both the resolution
and range with which real parameters were represented by binary strings were adapted
over time, based on population measures of gene-wise convergence and diversity, help-
ing to avoid premature convergence. Shaefer & Smith (1990) extended ARGOT to han-
dle combinatorialproblems such as the travelling sales-rep. In a similar approach,Schrau-
dolph & Belew (1990) considered a dynamic parameter-encoding scheme in which the
interval representedby a given gray-codedbinary gene shrinks over time, triggered based
on measures of population convergence. Both pairs of researchers reported good results
on a test suite of problems.



In his CHC genetic algorithm, Eshelman (1990) employedmass mutation to restart
the search when the population had converged. (In normal operation CHC used no muta-
tion.) During a restart, copies of the best individual found to date were mutated at a high
rate (e.g. 35%) to produce the new population. Typically the best individual was also
added unchanged. Whitleyet al. (1991) instead advocated thedelta-coding technique
for restarts. In this method, chromosomes encoded relative distances from previously
discovered good solutions, rather than absolute parameter values. Their algorithm was
repeatedly run until convergence and then restarted with the new chromosomes repre-
senting displacements from the best previous solution.

It has been reported that even in the absence of known good solutions it can be com-
putationally efficient to allocate more than the minimum resources to initialisation be-
fore the search itself takes place. For example, Bramlette (1991) used what he called
extended random initialisation in which each population member was selected as the
best ofn randomly chosen individuals. He considered several standard test functions and
used a meta-GA to evolve this tournament size (among other parameters), and reported
good results withn up to 20, for which about 14% of function evaluations were used in
initialisation. Themessy genetic algorithm of Goldberget al. (1989) used an analogous
primordial phase to find ‘useful’ building-blocks.

In real-world applications, the importance of non-randominitialisation has often been
cited. Fogarty (1989) used a genetic algorithm to optimise valve settings for an indus-
trial furnace application. He experimented with time-varying mutation rates, and found
that an effective initialisation strategy involved starting with a completely homogeneous
population (cloned from a conservative solution) and using an initially high but expo-
nentially decreasing mutation rate in the ensuing evolutionary process. He also showed
that such a mutation schedule was not particularly effective when starting with a ran-
domised population. There are clear links with the mass-mutation approach but the two
methods are not equivalent.

De la Maza (1989) studied the problem of generating production rules to make in-
ferences about a database (here concerning horse-racing). Finding that run-times were
excessive when starting from a random population, he instead began with a population
consisting of the best single-variable rules produced by a simple heuristic.

Powellet al. (1989) combined a genetic algorithm with an expert system for engi-
neering design optimisation (e.g. turbine design). Here, the evaluation function was a
complex simulation code with many degrees of freedom. To avoid the perceived inef-
ficiency of evaluating many random solutions, they seeded more than half of the initial
population with a combination of previous good solutions and prior design steps made
by the expert system. They reported that this reduced by a factor of five the number of
runs required to yield a given performance improvement.

Ramsey & Grefenstette (1993) evolved condition-action rules in the face of a chang-
ing environment in their SAMUEL system. They employeda restart strategy they termed
case-based initialization. At the start of each new epoch (environment change) a large
part of the population was replaced with a combination of best strategies from similar
epochs, robust general strategies, and some random strategies. They claimed that this
mix helped to preserve diversity and to avoid premature convergence.

In his work on Tierra, Ray (1994) considered the evolution of computer programs



which illustrated many parallels with biological systems, and seeded the initial “primor-
dial soup” with either hand-crafted or previously evolved programs. He introduced the
terminoculation for the process of non-random initialisation. As defined by the Collins
English dictionary,

inoculate vb. 1. to introduce (the causative agent of a disease) into the body in
order to induce immunity2. to introduce (microorganisms, esp. bacteria) into
(a culture medium)3. to cause to be influenced or imbued, as with ideas

he used it in its second form. However, it is interesting to note that the third form is par-
ticularly apt for the process by which we try to exploit the unknown good characteristics
captured by some known high-quality solution(s).

3 Initialisation and Inoculation Strategies

We now return to the question of how to exploit domain knowledge through initialisa-
tion. We start by establishing the conditions under which this may be feasible, and go
on to suggest various mechanisms by which it might then be accomplished.

3.1 Theoretical Considerations

When presented with one or more good solutions to a search problem, but with no ad-
ditional information, we can argue from fundamental limitations on search that they are
useless in the quest for better solutions—that is, the search will perform equally well
without them. The so-calledno free lunch theorem (Wolpert & Macready, 1995) and
related results (Radcliffe, 1992; Radcliffe & Surry, 1995) captures the straightforward
idea that in the absence of prior information (i.e. domain knowledge) no search method
can outperform enumeration. The essential intuition is that even after sampling an un-
known function at some subset of its domain, there is no principled way in which to
predict its value at some as-yet unsampled point without making assumptions about the
function. Clearly, additional knowledge of the function’s structure is required before any
particular set of assumptions could be justified. When we consider a set of good solu-
tions and their corresponding function values in the same light, as if they formed some
“past search history”, we see that they must therefore be useless to further search unless
we can make some assumptions about the problem structure.

We must therefore posit some additional (domain-specific) knowledge in order to
admit the possibility that known good solutions might be useful (and indeed to have any
purpose in continuing this discussion). This is not unreasonable as any real problem is
likely to contain a great deal of structure. Of course, this does not mean to say that said
structure is necessarily easy to exploit!

As discussed previously, evolutionarymethods typically make use of domain knowl-
edge only implicitly through the representation and operators that they employ. It thus
seems that this is a reasonable mechanism by which to inject the required additional in-
formation. That is, we will assume that a context of representation and operators (in
some senses duals of one another; Battle & Vose, 1991) is given, and that they are in
some loose sense “well-suited” to the problem at hand.



We may then refocus our attention on the problem of how to make use of known good
solutions, given also a suitable representation and operators which will be employed in
the search. We claim that such high-quality individuals will be useful in finding better
solutions only if they share properties with respect to the operators and representation
at hand. In the language of evolutionary search, this may mean that the hamming dis-
tance between the corresponding genomes is relatively small, or that the average fitness
of some schemata (or their generalisation, formae; Radcliffe, 1991) to which they be-
long is relatively high. However, because the mechanisms by which evolutionary search
“works” are as yet poorly understood, these are by no means the only possibilities.

It should also be noted that the oft-stated goal of finding a global optimum of a given
function is poorly conceived unless such an optimum shares characteristics with other
high-quality solutions that permit it to be found after visiting only a small fraction of
the search space. It is notin general the case that a representation which is well-suited
to a search problem in the sense discussed above will have the same qualities for the
particular points where global optima happen to be located.

The arguments above suggest that any approach to the problemof initialisation should
take place within the context defined by the particular representation and operators to be
used in the ensuing search. Further, it leads one to believe that search using a given repre-
sentation and operators will likely be more effective if non-random initialisation (using
given high-quality solutions) is performed using thesame combination of representation
and operators. (This could be explicitly tested in the context of any problem for which
we can construct multiple natural representations.) We proceed to explore some of the
possibilities for such initialisation strategies.

3.2 Practical Inoculation Strategies

When no heuristic knowledge is available, and no assumptions are made concerning
representation or operator quality, we proceed by simply selecting the population uni-
formly at random from the search space. There is also the option of biasing the sam-
pling to increase the uniformity of coverage of the search space (Holland, 1975; Grefen-
stette, 1987).

The simplest strategy for incorporating domain knowledge in the initialisation pro-
cess is toinoculate a random population by adding a good solution and then to let the
algorithm take its course. The heuristic will be manipulated by the hypothesised good
operators in the well-suited representation, and if it does capture useful information, may
help the search to proceed more efficiently. In practice, details of the particular algorithm
used will also have dramatic effects on efficacy as discussed in section 4.

Given any mutation operator,mass mutation can be used to inject variants of a good
solution into an initial population. In this procedure, a solution is repeatedly cloned and
mutated at a high rate to produce each member of the population. This population may
also be inoculated with an unmodified copy of the original solution. As the rate of muta-
tion is increased, the resulting population becomes less clustered about the original so-
lution and more like a random one. Note however that with any mutation operator that
does not chose uniformly between alleles (such as creep mutation) even mass mutation
with a rate of 100% does not result in a truly random population.



One could also envisage using a recombination operator in the initialisation process
but this will be pursued in a future paper.

A further alternative, not requiring a particular good-quality solution, presents itself
when allele values are known to capture fitness information in some way (for instance,
there may be some degree of linear separability in the fitness function). In this case it
is possible to initialise the population with a non-uniform distribution over allele fre-
quencies. This is explored further in the discussion of the travelling sales-rep problem
in section 5.4.

It is clear that any method for incorporating previously known good-quality solu-
tions into an evolutionary algorithm can also be used forrestarting the algorithm once
it has converged in some sense (see section 4). In such a case, the best solution or solu-
tions from the final population can be used to seed a new initial population. However,
it is important to distinguish between the two cases. For while we have to posit a good
representation and operators in order for an externally provided solution to be poten-
tially useful, in the case of a restart we know that the solutions we are initialising with
have been discovered exactly because we used the particular representation and opera-
tors that we did. This may appear to be a subtle distinction, but seems to be borne out in
experiments—in the case of the TSP (section 5.4) we find that we can effectively inocu-
late with a heuristic tour but that an efficient restart strategy is elusive. Further research
is clearly required here.

4 Premature Convergence and Population Diversity

A number of practical algorithmic details must be considered when utilising any ini-
tialisation procedure. Most important perhaps is the issue of avoiding premature con-
vergence and preserving population diversity, as it is widely believed that inoculation
strategies exacerbate these problems. We discuss various ways in which convergence
(or conversely, diversity) can be measured, and then mention some methods by which it
can be combatted.

Population diversity can be defined in a variety of ways on each of a number of lev-
els. We can consider measuring genotypic diversity, phenotypic diversity, or the diver-
sity of objective-function (fitness) values.

Fitness diversity measures are typically simplest, as they involve only the calcula-
tion of parameter estimates to characterise the spread in the distribution of a single real
variable (such as variance or higher moments).

Phenotypic diversity measures are normally application dependent, but involve mea-
suring the heterogeneity in expressed characteristics after morphogenesis.

Genotypic measures, at least in the case of genetic or pseudo-genetic representa-
tions (Radcliffe & Surry, 1994a), involve measuring the spread of a set of points in a
multi-dimensional vector space (in which the axes correspond to genes and allowable
co-ordinates correspond to alleles). Any pair-wise distance metric, such as hamming dis-
tance (for cardinal genes) or euclidean distance (for ordinal genes) can be used to col-
lapse the multi-dimensional space into a single-variable distribution which can be anal-
ysed using conventional statistical techniques. Alternatively, entropic methods seek to



calculate the first-order informationcontent of a typical populationmember (e.g. Grefen-
stette, 1987). They are applicable only in the case when alleles are drawn from a finite
set. An further approach would be to employ cluster analysis techniques, although the
authors are unaware of any work in this area.

Combined definitions are also possible—for instance Whitleyet al. (1991) measure
diversity by calculating the hamming distance between the pair of genomes (bit strings
in this case) with the best and worst fitnesses.

Numerous techniques have also been developed for counteringconvergenceand thus
encouraging diversity. These include exploitation of population structure and speciation
(surveyed in Radcliffe & Surry, 1994c), co-evolutionary models (e.g. Hillis, 1991; Hus-
bands & Mill, 1991), adaptive mutation (Whitley & Hanson, 1989), incest-prevention
(Eshelman, 1990), crowding (DeJong, 1975) and sharing (Goldberg, 1989), as well as
others. Due to the diverse nature of the problems studied here (section 5) we used only
simple measures based on the selection and replacement regime. Our algorithms en-
forced uniqueness within the population and used tournament selection to induce a rel-
atively low selection pressure. These measures help to avoid any difficulties created by
the existence of asuper-individual (a solution substantially better than the rest of the
population), which is likely to be the case after inoculation. We also employed elitism
in order to prevent the stochastic loss of the best solution (particularly important when
only a single inoculant is initially present).

As noted below, we actually find that no unusual loss of diversity is associated with
runs using non-random initialisation, but that we do nevertheless often observe conver-
gence to lower-quality solutions than with random initialisation.

5 Experimental Results

Quadstone Ltd, a decision support company, has worked on a variety of industrial and
commercial optimisation projects. Several of these applications provide the basis for
experiments on various of the previously discussed initialisation strategies. This brings
the twin advantages of having non-trivial, real-world applications rather than artificially
constructed problems, and also of building on the extensive prior effort on algorithmic
tuning and sensitivity studies.

Four problems are presented, two involving high-dimensional real-valued search do-
mains, and two of a combinatorial nature. They include both constrained and uncon-
strained problems. In each case, one or more high-quality solutions is available from
external sources. Several initialisation strategies are investigated, including inoculation
of a random population with a single instance of a heuristic, mass mutation from clones
of a heuristic (but with the heuristic itself not present in the initial population), and ran-
dom start. Some problem-specific methods are also used.

5.1 Gas-network pipe sizing

Quadstone has worked with British Gas plc on a pipe-sizing problem for a gas-network
(Boydet al., 1994). In this application, a network topology is specified along with a pat-
tern of nodal gas demands and supplies. The requirement is to select diameters for each
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Fig. 1. Each circle in the figure represents the best result found in a single run from an initial pop-
ulation formed by mass mutation of a known good solution (produced by a proprietary heuristic;
cost shown as dotted line). A rate of 1.0 corresponds to a completely random population, and a rate
of 0.0 is used to indicate a random population containing a single unchanged copy of the inoculant.
A small amount of random noise has been added to both the coordinate values in order that mul-
tiple identical points can be distinguished. The curve indicates the mean best performance with
standard error bars. Although mean performance improves as the population starts more tightly
clustered around the heuristic solution (lower mass-mutation rates), the spread also decreases so
that the best solution found over a number of runs actually deteriorates. Indeed, the very best net-
works are foundonly when starting with a random population. See also table 1 and figure 2.

pipe segment to achieve lowest cost (where smaller pipes are cheaper). The problem dif-
ficulty arises due to two constraints—that nodal pressures must exceed a minimum de-
sign value, and that each pipe must have at least one upstream pipe of the same or greater
diameter. Even a relatively small network (25 pipes) with a small range of allowable di-
ameters (6 for each pipe) leads to a respectably-sized search space (��� � � � ����)
in which valid networks are sparse (random sampling indicates that only of the order of
1 in ��� networks satisfies both constraints). A network designed by British Gas using
a proprietary heuristic had previously been installed, and this provided the high-quality
solution used to seed the populations in our experiments.

A previously tuned genetic algorithm based on the COMOGA method (Surryet al.,



Network Cost Hamming distance from:
Heuristic Best Known

17743.8 (0) 12
17677.3 9 19
17227.4 4 12
17195.3 5 13
17151.5 7 15
17125.1 15 5
17075.3 12 (0)

Table 1. The hamming distances from both the heuristic solution (top) used to seed the popula-
tions and from the best known solution (bottom) are tabulated. (Each solution comprises 25 in-
teger-valued genes, each with six alleles.) The two entries in bold represent the strong attractors
shown in figure 1, which are closer to the heuristic than the two better solutions. However, it is
likely that the topology of the search-space induced by the constraints also plays an important role.

1995) was used, with populations of 100 networks and terminating after at most 20,000
evaluations or 5,000 with no improvement. Due to the ordinal nature of the integer-
valued genes, both creep and random mutation are used, but mass mutation was car-
ried out using random allele replacement. Each of the 600 runs carried out during the
experiment converged to a viable network notwithstanding the low density of feasible
solutions in the search space. Results are detailed in figures 1 and 2, along with table 1.
In general we find that as we incorporate more heuristic knowledge, the average qual-
ity of final solutions improves and run-times decrease. However, the variability of final
solutions also decreases, and in fact the very best solutions are only discovered when
starting with a random population.

5.2 Oil-field production scheduling

Quadstone has worked with British Petroleum to maximise the economic return from a
group of interdependent oil and gas fields (Hardinget al., 1995). This involves setting
the target production rates for each field in each year. A trade-off arises because earlier
extraction offers earlier revenue, but incurs higher costs (since larger facilities are re-
quired to produce and handle the flow). There are also more subtle effects, such as the
phasing of the start of production for the different fields, and the choice of when to aban-
don each field. The resulting optimisation problem involves searching for high-quality
target production schedules, represented as real-valued matrices with over 200 entries,
while satisfying a number of constraints. An existing solution produced by BP using ex-
pert knowledge, simulated annealing and sequential quadratic programming was made
available to us. In Quadstone’s previous work, a hybrid evolutionary technique with spe-
cialised operators was employed. A number of representations were considered, using
both memetic and genetic approaches, and a large number of parameter sensitivity stud-
ies were carried out, resulting in a high-quality, tuned reproductive plan.
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Fig. 2. This figure summarises the results shown in figure 1 (note different scale), but in-
cludes time to convergence (defined here as 5000 evaluations without improvement). Each point
plots the mean best fitness versus mean number of evaluations at convergence for a variety of
mass-mutation rates (100% yielding a fully random population, and 0% indicating inoculation
with a single unmodified copy of the heuristic). Increasing homogeneity around the heuristic so-
lution (dashed line) tends to increaseaverage solution quality and to reduce expected run time, but
this hides the fact that bestoverall solution quality over a number of runs actually deteriorates.

We used an algorithm with no local optimisation, population sizes of about 500 so-
lutions and termination after approximately 250,000 evaluations. The results of initiali-
sation experiments using the solution provided and the previously best known solution
(found using a memetic algorithm) gave the results shown in figure 3. We again find
that mean performance improves for intermediate mass-mutation rates but that variabil-
ity correspondingly deteriorates.

5.3 Credit scoring

Institutions typically attempt to determine the credit-worthiness of applicants prior to
issuing credit facilities. One method for doing this is to use a scorecard to rate an appli-
cant’s suitability. The applicant is rated in a number of categories, and these ratings are
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Fig. 3. The figure shows the results of initialisation experiments on an oil-field produc-
tion-scheduling problem, involving more than 200 real variables. Two sets of experiments are
shown, one using a supplied heuristic solution (dotted line) and one using the best known solu-
tion (found using a prior run; dashed line). Mean best performance after approximately 250,000
evaluations is plotted with standard errors, and the overall best is shown as a triangle. Mass
creep-mutation is used so that even using a rate of 1.0 is not equivalent to starting with a random
population (shown as filled symbols). Note the mid-range peaks and decreasing variance with de-
creasing initial population diversity (lower mass-mutation rates).

combined using a set of weights to yield an overall score for the applicant, upon which
a decision can be based.

Quadstone has used a variety of evolutionary algorithms to produce enhanced credit-
scoring models (Bruce & Radcliffe, 1995).For a linear (additive) scorecard, this involves
finding a set of real-valued weights which maximises the predictive power of the score-
card over a database of customers whose credit-worthiness is known. The measure con-
sidered here is the Gini score, which indicates how well a proposed scorecard can sepa-
rate good from bad risks, varying from����� (perfectly reversed) to���� (perfect),
with random weights leading to scores of about zero.

In the work previously carried out, an existing scorecard was made available. This
was used as a heuristic value with which to inoculate the initial population of 100 score-
cards. Runs were carried out for 10,000 evaluations (with each requiring the processing
and sorting of a database of about 10,000 records); however, greedy techniques are still
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Fig. 4. The results of inoculating a population of scorecards with an existing heuristic solution
(fitness of dotted line) are shown. The mean performance over several runs of the best scorecard
found after 10,000 evaluations is plotted, along with with standard error bars and overall best (tri-
angles). Since a creep mutation operator is used in the mass-mutation process, a rate of 1.0 is not
equivalent to a random population (shown filled). This figure shows significantly more noise than
the other results (figures 1, 3 and 5). This is due in part to averaging over fewer runs which are
computationally expensive, but nevertheless similar trends are exhibited: mean performance gen-
erally decreases with more random initial populations, but spread increases.

competitive until significantly more evaluations are permitted. The results, which serve
for comparativepurposes, are summarised in figure 4. Although somewhat noisy, similar
trends to the other experiments are apparent.

5.4 Travelling sales-rep

The travelling sales-rep problem is a well-known model of combinatorial optimisation
problems, and has been widely studied in the literature on evolutionary computation. All
of the usual representations and operators for tours used in evolutionary search make the
problem appear to be constraineddue to non-orthogonality(Radcliffe & Surry, 1994a)—
the function being minimised (tour length) is a simple sum over allelic contributions with
the difficulty arising in not being able to simply choose then shortest edges.

A large number of heuristic techniques are known which are effective in finding
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Fig. 5. The figure summarises the results of initialisation experiments on a small (100 city) trav-
elling sales-rep problem using a simple genetic algorithm with no local search. The tour resulting
from (deterministically) Karp-stitching all of the cities together was used as the seed tour (dotted
line). The best value found after 100,000 tour evaluations is averaged and plotted along with stan-
dard error bars and the overall best (shortest) tour found over a series of runs. The filled points
represent a population initialised with tours formed preferentially with short edges (not making
use the heuristic). Note that the best tour found at rate 0.05 can be considered an outlier, as all
other runs in that set converged to the same value (near the plotted mean).

near-optimal tours. For the purposes of the work here, we used Karp’s stitching algo-
rithm which recursively merges sub-tours to form a tour of all cities (a deterministic tour
results from stitching then “sub-tours” generated by considering each city as a single
self-loop). The resulting tour was used in the inoculation experiments shown in figure
5. A simple genetic algorithm was used with populations of 100 tours and terminating
after 50,000 evaluations. (Note that much larger problems can be solved much more ef-
ficiently by incorporating local search, but such was not the purpose of the experiments.)

An alternative initialisation procedure was also used, in which tours are not gener-
ated randomly, but instead favour short edges. Work is ongoing in this area, but prelim-
inary results are extremely encouraging, particularly when the idea is extended to yield
a fast partial local optimisation scheme.

Work on restart strategies for the TSP is also underway, and suggests that inoculation
with a heuristic tour may be fundamentally different from restarting using a previously



evolved tour. Various mass mutation techniques seem to either have either no or detri-
mental effects on the convergence properties of the algorithm.

6 Discussion

Through experiments on inoculation and mass mutation in a wide range of real-world
problem domains, the existing folklore regarding initialisation has been explored. We
find a tendency for mean performance (in terms of average solution quality and number
of evaluations until convergence) to increase as initial populations become more tightly
clustered around an existing high-quality solution, peaking at some intermediate value
(mass-mutation rates of between 10% to 50%) and then trailing off slightly. However,
this is coupled with a corresponding decrease in variance and often a deterioration in the
quality of the best solution found over a number of runs. A particularly striking exam-
ple of this is found in a pipe-sizing problem, in which the very best networks were only
found when starting from a random population (see figure 1). There is also some indi-
cation that when multiple heuristics are available, best results are obtained when lower
mutation rates are used with correspondingly higher-quality solutions.

Preliminary results also indicate that after the first few generations, there is little
quantitative difference in diversity characteristics between algorithms using random ini-
tial populations and those using inoculated ones. For instance in both the TSP and pipe-
sizing problems (sections 5.1 and 5.4), we observe little difference in measured first-
order entropy (for each problem, the diversity of both inoculatedand randomly initialised
populations falls to 2–4% of a random population after a few generations). We do how-
ever see different convergence patterns, suggesting that diversity is not everything.

Planned future work includes investigation of the distinction between inoculation
with externally provided solutions and restart strategies, recombinative forms of initial-
isation (as opposed to techniques based on mutation), the importance of representation
and the study of fitness distributions near inoculants (using analysis of formae variance
and/or fitness-distance correlation measures).
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